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Abstract

Physiological rhythms arise from nonlinear interactions
between biological mechanisms and environmental condi-
tions. A possible approach to study these dynamics is by
means of simplified mathematical models. An essential as-
pect of these models is how to determine the statistical sig-
nificance of the rhythms present in a temporal series.

The aim of this work is to propose an automatic rhythm
analysis method based on lasso or l1-regularized linear
regression, with physiological rhythm components as fea-
tures. These models have sparse solutions, allowing to
identify relevant rhythms. Since the sine and cosine com-
ponents of a given period constitute a natural group struc-
ture, we used a group lasso model. A cross-validation
scheme preserving the temporal structure of the signal al-
lowed to select the regularization parameter. Synthetic
signals were used to test the method, combining different
sinusoidal rhythm components plus gaussian noise. The
method was also applied to study the rhythms in heart rate
signals (HR).

The method correctly detected 98% of rhythm patterns
on the synthetic data. The method was also able to extract
significant cardiac rhythms in HR signals. Since lasso is
the closest convex relaxation of the best feature subset se-
lection problem, the proposed method is able to optimally
identify the rhythms present physiological signals.

1. Introduction

As many studies have shown most biological variables
vary greatly along several time scales in health and dis-
ease [1]. For example, heart rate (HR) shows oscillations
with different periods that have been widely studied [1, 2].
These rhythms are of clinical interest since several studies
indicate dynamics with differences between normal indi-
viduals and patients. Some studies have shown blunted or
altered circadian rhythms of different physiological vari-
ables [3–5]. A suitable hypothesis is that physiological

mechanisms in healthy subjects are more adaptable to en-
vironmental changes than those in pathological subjects,
and maybe with a progressive deterioration of this adapt-
ability related to the severity of the pathological condition.
A possible approach to study these dynamics is by means
of simplified mathematical models of physiological sys-
tems [6]. An essential aspect of these models is how to de-
termine the statistical significance of the rhythms present
in a temporal series.

In [7] we presented a lasso path approach to analyze the
order of activation of the rhythms, representing the impor-
tance of each rhythm, in HR signals. In the present work,
we further develop the approach proposing an automatic
rhythm analysis method based on lasso or l1-regularized
linear regression, with physiological rhythm components
as features. These models have sparse solutions, i.e. many
estimated weights are zero, allowing to identify relevant
rhythms. Since the sine and cosine components of a given
period constitute a natural group structure, we propose to
use a group lasso model [8]. In order to select the reg-
ularization parameter a suitable cross-validation scheme,
preserving the temporal structure of the signals, was im-
plemented. Synthetic signals were used to test the method,
combining different sinusoidal rhythm components plus
gaussian noise. The method was also applied to study the
rhythms present in 7-day heart rate signals.

The structure of the paper is as follows. Section 2 de-
scribes the the methodological approach. Section 3 de-
picts the results. Finally, the conclusions are outlined in
Section 4.

2. Methods

Extensive sets of time series collected over several
decades show that nearly all biological variables show
some degree of more or less periodic behaviour. In many
cases, it is useful to look upon a measurement series as
consisting on a deterministic part, which may have both
rhythmic and arrhythmic systematic components, and a
noise part [1].
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We propose an automatic rhythm analysis method based
on lasso or l1-regularized linear regression, with physio-
logical rhythm components as features. Since the sine and
cosine components of a given period constitute a natural
group structure, we used a group lasso model. A cross-
validation scheme preserving the temporal structure of the
signal allowed to select the regularization parameter.

2.1. Rhythm Analysis with Lasso and
Group Lasso

Joint characterization of a set of rhythms can be per-
formed by a multiple components model [1],

yn = M +
∑
i

Ai cos(2πfitn + φi) + en (1)

n = 1, ..., N

where M denotes the rhythm-adjusted mean or MESOR
(midline estimating statistic of rhythm), fi, Ai and φi are
the frequency, the amplitude and the acrophase (i.e., the
lag from a defined reference time point to the crest time in
the cosine curve fitted to the data) corresponding to each
considered rhythm, and N the signal length. The random
variable en corresponds to the difference between the ob-
served sample yn and the value provided by the estimated
regression model ŷn. The least squares (LS) method can
be applied to determine the regression parameters. How-
ever, typically all of the least-squares estimates from Eq. 1
will be nonzero. This complicates the interpretation of the
final model.

Instead we can constrain, or regularize the estimation
process. We propose to use l1-norm regularization which
has the effect of forcing some of the coefficient estimates
to be exactly zero, yielding to sparse models [9].

In order to use this approach, we need to reformulate the
rhythm model as a linear one, rewriting Eq. 1 as

yn =M+
∑
i

αi cos(2πfitn)+βi sin(2πfitn)+en, (2)

where αi = Ai cos(φi) and βi = −Ai sin(φi). Therefore,
the sines and cosines of frequencies fi are the characteris-
tics (features) of the model. Collecting all the coefficients
in a vector of weights w = [M,α1, . . . , αk, β1, . . . , βk],
where k is the number of rhythm components, and collect-
ing all the characteristics and the MESOR in a matrix X ,
the rhythm model can be compactly written as

y = Xw + e (3)

Weights of the model, w, can be estimated using LS
including a regularization term

Figure 1. Comparison of estimation weights constraints
between lasso (left) and regularized regression (right).
Adapted from [10].

ŵ = argmin
w
‖y −Xw‖22 + λ‖w‖1 (4)

where ‖w‖1 =
∑2k+1

p=1 |wp| is the l1 norm of w, and λ is a
user specified parameter [10].

The nature of lasso constraint allows to control the num-
ber of weights actives (wp 6= 0), so that, making λ suffi-
ciently large will cause some of the weights to be exactly
zero. This does not hold for l2 or lq with q > 1 [8], see
Figure 1. Accordingly, it is possible to use lasso models to
find the most important variables (features) of the signals
in the sense of mean squared error (MSE) [11].

There are regression problems in which the character-
istics have a natural group structure, in the present case
the sine and cosine components of a given period (rhythm)
constitute a natural group structure. In such cases it is
desirable to have all coefficients within a group become
nonzero (or zero) jointly [8].

Consider a linear regression model involving J groups
of characteristics, where for j = 1, ..., J , the vector Zj

represents the characteristics in group j, and θj represents
the set of regression coefficients for group j. Collecting all
the groups in a matrix Z, the rhythm model can be com-
pactly written as

y = Zθ + e (5)

The group lasso solves the convex problem

θ̂ = argmin
θ
‖y − Zθ‖22 + λ‖θ‖2 (6)

where ‖θ‖2 =
∑J

j=1 ‖θj‖2 is the l2 norm of θ. It is im-
portant that this criterion involves the sum of the ordinary
l2−norms, as opposed to the squared l2−norms. In this
way, it amounts to imposing a block l1/l2 constraint on the
overall collection of coefficients. The effect of this group
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Figure 2. Representation of the cross validation for time
series data.
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Figure 3. MSE provided by the temporal cross valida-
tion as a function of the log(λ) values for the HR signal
in Fig. 5. Mean (solid black line) and standard deviation
(blue dashed lines) of the set of folds.

penalty is to select all the coefficients, of a group of char-
acteristics, to be in or out of the model [8].

2.2. Cross Validation for Time Series Data

In order to select the regularization parameter λ a
suitable cross-validation scheme, preserving the temporal
structure of the signals, was implemented. Time series data
is characterized by the correlation between observations
that are near in time. Classical cross-validation techniques
assume the samples are independent and identically dis-
tributed, therefore applying such techniques would result
in unreasonable correlation between training and testing
instances yielding poor generalization. A reasonable ap-
proach is to evaluate the model for time series data on the
future observations. We used a variation of the k−fold
cross validation technique, where the first k folds are used
as train set and the k+1 fold as test set, see Fig. 2. Unlike
standard cross-validation methods, successive training sets
are supersets of those that come before them [12].

2.3. Experiments

In the present study, 8, 12, 24 hour and 7 day period
rhythms are considered by the model as characteristics, but
any set of rhythms could be considered.

In order to test the proposed methodology we created a
set of 200 synthetic signals. The synthetic signals were as-
sembled as combination of different number of sinusoidal
rhythm components, and also adding gaussian noise with
SNRs ranging between 3 and 8 dB. The synthetic signals
simulated the time evolution of a certain variable during
14 days with a sampling period of 1 hour. The temporal
cross validation was implemented with the train and test
sets containing the signal samples as follows (see Fig. 2)
• First iteration: Train→ 1 to 30; test→ 31.
• Iteration m: Train→ train + test from iteration m − 1;
test→ 31 +m− 1. For m = 2...N − 30.

Figure 4 shows an example of a synthetic signal created
as combination of a sinusoidal rhythm of 24 hour period, a
sinusoidal rhythm of 7 day period and gaussian noise with
6 dB SNR (blue solid line).

We also analyzed a set of HR signals, obtained from a
7 day Holter database from patients with congestive heart
failure, collected in the Arrhythmia Unit of Virgen de la
Arrixaca University Hospital (Spain) [2]. The signals were
obtained as the mean HR in each 10 minutes window dur-
ing de 7 days. Figure 5 shows an example of a real HR
signal (blue solid line). The temporal cross validation was
implemented as for the synthetic signals, but the training
set for the first iteration contained 140 samples, which cor-
responds proximately to the samples in the first 24 hours
of the signal.

To select the regularization parameter (see Sec 2.2), af-
ter some inspection of a wide range of values for λ, we
narrowed the search from 0.001 to 1, testing 30 logarith-
mically spaced values for each signal. Figure 3 shows the
MSE as a function of log(λ) values provided by the tem-
poral cross validation applied to a real HR signal.

3. Results

The method correctly detected 98% of rhythm patterns
on the synthetic data. Considering a success only when
the exact set of rhythms selected by the model matched the
set of rhythms in the synthetic signal. Figure 4 shows an
example of the resulting rhythm model after applying the
proposed method (red dashed line) to the synthetic signal
(blue solid line). The method correctly detected the two
rhythms present in the noisy signal.

For real HR signals we qualitatively observed that the
method was able to extract the underlying cardiac rhythms.
Figure 5 shows the resulting rhythm model (red dashed
line) for a HR signal (blue solid line), the method detected
a 24 hour and a 12 hour period rhythms.
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Figure 4. Example of a synthetic signal created as com-
bination of a sinusoidal rhythm of 24 hour period, a si-
nusoidal rhythm of 7 day period and gaussian noise with
6 dB SNR (blue solid line). The resulting rhythm model
obtained by the proposed method (red dashed line)
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Figure 5. Example of a HR signal obtained from a 7-day
Holter recording (blue solid line). The resulting rhythm
model obtained by the proposed method (red dashed line)

4. Conclusions

We propose an automatic rhythm analysis method based
on lasso or l1−regularized linear regression. Since lasso is
the closest convex relaxation of the best feature subset se-
lection problem, the proposed method is able to optimally
identify the rhythms present in physiological signals.

The method can be easily adapted to extract rhythm in-
formation from any temporal signal.
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