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Abstract 

This paper describes a novel method for artefact 

detection in electrocardiogram (ECG) signals. 

 ECG analysis algorithms require a relatively clean 

dataset. Therefore, data corrupted by artefacts should 

either be filtered or discarded. The proposed method can 

be situated in the second class, since it identifies 

contaminated segments that can later be discarded from 

further analysis.  

The dataset used in this study contains 16 single lead 

ECG recordings, segmented in intervals of 60 seconds. 

Each segment is labeled either clean or contaminated by a 

medical doctor. Only 3.2% of the data is contaminated.  

The segments are characterized by features derived 

from their autocorrelation function (ACF). Due to its 

effectiveness in skewed datasets, the RUSBoost algorithm 

is then used for classification. Results show an accuracy of 

99.85%, a sensitivity of 100% and a specificity of 95.51%. 

This suggests that the proposed method could be of great 

help for future ECG processing.  

 

 

1. Introduction 

The electrocardiogram (ECG) is a fundamental tool in 

screening programs for cardiac health. The cost-

effectiveness of this method has been shown in all age 

groups: adults, young athletes, neonates,… (1). However, 

due to the briefness of this test, it is possible that certain 

heart rhythm abnormalities are not detected. This lack of 

continuous measurement initiated a shift towards 

ambulatory monitoring devices. These devices allow 

monitoring for a longer period, thereby increasing the 

likelihood of detecting abnormalities.  

Due to the ambulatory nature of these devices, motion 

artefacts, loose electrodes and interference from other 

electrical devices could cause distortions of the signal. The 

presence of these distortions, further referred to as 

artefacts, could reduce the diagnostic capabilities of the 

monitoring device and lead to inappropriate treatment 

decisions. 

Different methodologies have been proposed to detect 

artefacts and enhance signal quality. One of these methods 

is blind source separation, e.g. ICA (2). This method acts 

on the whole signal and results in an enhancement of the 

overall quality of the ECG signal. However, no 

information on the artefact location can be extracted with 

this method. A frequently used way to overcome this 

problem is to segment the signal. This is typically followed 

by a feature extraction and classification step. Spectral and 

statistical information are often used as features (3,4). 

Furthermore, a variety of machine learning techniques has 

been used for classification of the segments. The downside 

of this methodology is the need for a gold standard. 

A novel method is proposed to automatically identify 

the location of artefacts in long-term ECG recordings. The 

method starts by segmenting the ECG signal and 

characterizing each segment by its autocorrelation function 

(ACF). Features derived hereof are fed to a RUSBoost 

algorithm for classification. The choice for the ACF is 

motivated by the fact that it takes advantage of the 

repetitiveness of the ECG signal. Furthermore, it has been 

shown that the ACF of a clean segment is significantly 

different from a contaminated one (5). 

This paper presents the results of the automatic 

classification of ECG segments using ACF features and a 

hybrid algorithm, RUSBoost. The performance of this 

classification is compared with the performance of a 

different algorithm obtained on the same dataset (5). 

 

2. Materials and methods 

This section contains a description of the dataset, the 

processing and a detailed explanation of the 

implementation of the RUSBoost algorithm. All analysis 

were performed in Matlab.  

 

A. Data 

The dataset used in this study contains 16 single lead 

ECG recordings of 16 different patients from the sleep 

laboratory of the University Hospital Leuven (UZ 

Leuven), Belgium. A total amount of 152h and 12min of 
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ECG was acquired at a sampling frequency of 200Hz. 

Each recording was manually labeled by a medical 

doctor with adequate labeling experience. Segments were 

divided in two classes: Clean or contaminated. In total, 

147h 18 min (96.8%) was labeled clean and 4h 54min 

(3.2%) contaminated. This skewness is considered for the 

choice of classification algorithm, which will be explained 

later. The proposed artefact detection method consists of 

two main steps detailed in the next subsections.  

 

B. Segmentation, pre-processing and feature 

extraction 

The presented dataset was originally intended for sleep 

apnea classification. In that research field, it is customary 

to segment each signal first and then perform the analysis 

on a minute-by-minute basis (6). Taken this into 

consideration, each ECG recording was first segmented in 

intervals of 60 seconds.  

As explained in the introduction, motion artefacts, loose 

electrodes and interference from other electrical devices 

cause distortions of the signal. 

The presence of electrical devices could cause power 

line interference. This is a narrow-band signal centered 

around 50 or 60Hz. Furthermore, due to breathing and 

patient movement baseline wander could occur. Both 

contaminating factors could influence the signal, but can 

easily be removed by the correct filter. Therefore, the 

segmented signal is filtered by means of a zero phase, band 

pass Butterworth filter with cut-off frequencies of 1 and 

40Hz. This removes the baseline wander and power line 

interference. Additionally, the mean of each segment is 

subtracted to align the signal with the zero line.  

In theory, it is possible to derive features from the one 

minute segments and build a classifier based hereon. 

However, research by Varon et al. has shown that a 

window reduction causes an improvement of the 

algorithm’s resolution (5). Moreover, visual analysis of the 

noisy segments showed that often only small parts of the 

segments are contaminated. Therefore, it was opted to 

additionally segment each 60 seconds interval in intervals 

of 5 seconds. 

 Of every small segment, the ACF is computed with a 

maximum lag of 250ms. This depicts the repetitiveness of 

the ECG signal, but avoids inclusion of two consecutive R-

peaks. As mentioned in the introduction, a clear change in 

the ACF can be observed if an ECG is contaminated by an 

artefact. In Figure 1, one can observe the difference 

between the ACF of a clean and a contaminated segment.  

From the ACF, different features can be derived, among 

which the time lag of the different peaks and valleys, the 

amplitudes at different time lags and the similarity of the 

different ACF functions in a one minute interval.  

The first feature that is selected from the 5 second 

intervals is the minimum time lag of the first saddle point 

of the ACF. In a clean segment, this time lag coincides with 

a shift of the R-peak towards the deepest point of the S-

wave. So this value represents the duration of the RS 

interval. Excessive lengthening or shortening of this 

interval indicates the presence of artefacts.  However, this 

saddle point is not always present due to e.g. a lack of S-

wave. Therefore, as a second feature the maximum 

amplitude at the estimated time lag of the first saddle point 

of an average heartbeat, located at 35ms, is proposed. The 

third and final feature that is selected, is a measure of the 

similarity of the different ACFs. For every 60s interval, the 

maximum range between the different ACFs of the smaller 

segments, in a time lag interval between 30ms and 115ms, 

is computed. A large range indicates a lack of similarity 

between the different ACFs within that interval. 

The features were divided in a training and test set 

(70% / 30%). The training set is selected using the fixed-

size algorithm, which maximizes the Renyi entropy (7). 

This ensures that, instead of having a random distribution, 

the training set distribution approximates the underlying 

distribution of the entire dataset. The training set is further 

used to train the artefact classification model.  

 

C. Classification 

In the case of a skewed dataset, traditional classification 

algorithms tend to classify the minority class to the 

majority class. This often results in a high overall accuracy 

but, an inaccurate classification of the minority class. In 

this dataset, the clean segments greatly outnumber the 

contaminated. Therefore, implementation of a 

classification algorithm that is able to effectively identify 

the rarely occurring contaminated segments is required.   

Several techniques have been proposed to overcome the 

problem of class imbalance, including data sampling and 

boosting. Data sampling, on the one hand, balances the 

class distribution either by oversampling the minority class 

or under sampling the majority class. Boosting, on the 

other hand, can improve the performance of any weak 

classifier by iteratively building the classifier. Seifert et al, 

combined random under sampling (RUS) and boosting into 

Figure 1: The ACF (bottom) of two different one minute 

segments (top). The first one corresponds to a clean segment, 

whilst the second corresponds to a contaminated segment. A 

clear difference between both ACF’s can be observed. 
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a new, hybrid, ensemble classification algorithm named 

RUSBoost (8). In the following, both components will be 

explained in more detail. 

- RUS: The desired class balance is achieved by 

randomly removing samples from the majority 

class. The main drawback of this method is the loss 

of information due to the training sample deletion. 

On the upside, the time required to train the model 

is decreased.  

- Boosting: This method builds a strong, ensemble 

classifier by making a linear combination of weak 

classifiers. The most common boosting algorithm 

is AdaBoost (9), which iteratively builds an 

ensemble classifier. Boosting can be applied on 

various weak learners, but in this study, it was 

opted to use decision trees.  

By combining both methods, the main drawback of 

RUS, the loss of information, is overcome. The complete 

outline of the method can be found in (8).  

Deep trees, with a minimal leaf size of 5 were used for 

higher ensemble accuracy. The training of each decision 

tree is established by the CART algorithm. The learn rate 

was set at 0.1 to additionally increase the accuracy.  

The performance of this model is evaluated by 

computing the accuracy, sensitivity, specificity and 

balanced accuracy. The latter being the average of the 

sensitivity and specificity in order to take the skewness of 

the dataset into account (10). 

 

3. Results and discussion 

A. Classifier 

The initial number of iterations was fixed at 1500. Since 

these settings create a large ensemble, the model needs to 

be compacted. To do so, the mean squared classification 

error of the training set is used as a determining factor.  

In Figure 2, the classification error is plotted against the 

number of weak learners. A clear elbow in the 

classification errors can be observed at 100 weak learners. 

Therefore, weak learners 101 until 1500 are removed from 

the model. The final model consists of 100 weak learners. 

 

B. Performance 

The total number of segments under investigation is 

9132 and only 294 of them are manually labeled as 

contaminated. This labelling allows to validate the 

proposed algorithm and compare the obtained performance 

with the performance of a previously developed algorithm 

on the same dataset (5).  

As explained in section 2, first the intervals are 

segmented in smaller intervals of 5 seconds. From these 5 

second intervals, the ACF features are derived. They are 

 
Figure 2: The classification error of the training set versus 

the number of weak learners. An elbow can be seen at 

approximately 100 weak learners. 

fed to the RUSBoost algorithm which classifies them in 

two groups: Clean or contaminated. The performance of 

the proposed algorithm can be observed in Table 1.  

In order to allow comparison between the novel and the 

previously developed method, further referred to as the 95th 

percent method, we applied it on the same test set. The 

results of this experiment are also displayed in Table 1. 

It can be observed that the novel algorithm outperforms 

the other, because both accuracy, sensitivity, specificity 

and balanced accuracy are higher when computed on the 

test set.  

Two reasons might explain these results. First, the 95th 

percent rule assumes that 5 percent of the data is 

contaminated, no matter the input. This assumption could 

never be completely fulfilled for this dataset, since only 

3.2% of the data is labeled as contaminated. The 

RUSBoost algorithm does not make such assumption and 

might therefore perform better.  

A second reason might be the effectiveness of the 

proposed algorithm on the presented, skewed dataset. A 

better accuracy, than the 95th percent algorithm, can 

already be observed, but a bigger difference can be 

observed in the balanced accuracy. This is a much more 

effective performance measure when dealing with skewed 

datasets. It can be observed that the balanced accuracy of 

the proposed method is 8.53% higher, compared to that of 

the 95th percent method. This is an additional indication 

that the RUSBoost algorithm is effective on skewed 

datasets. 

 

Table 1: Comparison of the performance of the novel and 

the 95th percent method, developed in (5). Clear 

improvements can be observed in all performance metrics. 

 RUSBoost 95th 

Accuracy 99.85% 97.01% 

Sensitivity 100% 97.55% 

Specificity 95.51% 80.90% 

Balanced Accuracy 97.75% 89.22% 
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4. Conclusion 

A novel algorithm to detect artefacts in ECG signals by 

means of ACF features and the RUSBoost algorithm is 

presented in this paper.  

Two advantages can be observed using this 

methodology. The first advantage is that it is capable of 

detecting artefacts in an online fashion. No comparison 

between different segments is made, therefore each 

segment can be analyzed separately. This allows a more 

efficient analysis of ECG segments.  

The ability to locate contaminated segments in the ECG 

signal is the second advantage. This is in contrast with 

methods that enhance the overall quality of the signal, such 

as ICA.  

A disadvantage of the method is the type of dataset on 

which it is trained. The dataset contains ECG signals from 

sleeping people. Therefore, it probably does not contain 

the same, or as much, contaminating factors as during 

daytime. Due to this, it might be possible that the algorithm 

performs worse on a daytime dataset.  

Overall, the performance of the proposed algorithm is 

very good on this dataset. In future work, it is necessary to 

test the model on different datasets, containing more 

artefacts, to define the actual value for real life artefact 

detection. Furthermore, the class probability could also be 

investigated for a continuous quality indication of each 

ECG segment. 
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