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Abstract

Aims: Atrial fibrillation (AF) is one of the principal
cause of mortality in elderly, thus its detection is extremely
clinically relevant. The aim of this study was to classify
short, single lead, ECG recordings, as atrial fibrillation,
normal sinus rhythm, other type of rhythms or noisy sig-
nal. Methods: First, we extracted, both from the ECG sig-
nals and from the RR interval series, about fifty features
characterizing these four classes. Then, we applied the
stepwise linear discriminant analysis for dimensionality
reduction selecting a subset of thirty discriminating fea-
tures. A Least Squares Support Vector Machine (LS-SVM)
classifier using these features was tuned and trained on the
dataset of the Physionet/Computing in Cardiology Chal-
lenge 2017. Results: The LS-SVM classifier provided, on
the hidden test set of the Challenge, an official final score
F1= 0.81, obtaining the twelfth place in the ranking of re-
sults with only 2 cents from the best (0.83). Conclusions:
This approach seems promising in particular in detecting
atrial fibrillation. Further work is needed to improve the
discrimination of other rhythms and noisy signals.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia and cause of mortality in elderly. It is character-
ized by a disorganized electrical activity in the atria and
rapid circulating waves of abnormal electrical signals con-
tinuously stimulate the atrium instead of the sinus node
normally stimulating the atrium [1].

Different algorithms have been designed for detection
and classification of AF. They are based on time-frequency
analysis of ECG [2], RR intervals analysis [3,4], short term
analysis of heart rate variability (HRV) [5] and sequential
analysis to check the absence of P wave [6,7]. Algorithms
based on P-waves performs poorly in presence of noise as
these waves are prone to contamination with motion and
noise artefacts [8]. Thus, most of the more recent ap-

proaches for AF detection are based on RR analysis. To
improve accuracy and specificity in AF detection, several
neural networks approaches have been recently proposed
[9–12]. In particular, Support Vector Machine (SVM) clas-
sifier has been commonly employed, has it gives promis-
ing results in various medical diagnostics [13]. Most of the
algorithms implemented aim at distinguish AF from both
normal sinus rhythm. However, it is also important dis-
criminating AF from rhythms with frequent ectopic beats
and noise. Indeed, these signals can confound usual strate-
gies for numerical algorithms to detect AF [14].

The aim of this study was to propose an approach for
classification short ECG recording as AF, normal rhythms,
other type of rhythms and noise, by applying LS-SVM to
features extracted both from the ECG signals and from
the RR interval series. This algorithm was trained and
tested on Physionet/Computing in Cardiology Challenge
2017 database [15]. The code was submitted for the Open-
Source Challenge call.

2. Methods

2.1. ECG processing

Artifact canceling was obtained by comparison of ECG
with a median filtered signal (60ms window) [16]: the
ECG values whose absolute difference from the filtered
ones exceeded a threshold were replaced with the average
of the values before and after them. Baseline wander was
estimated applying a linear phase low pass filter with cut-
off frequency at 3 Hz and detrended signal was obtained
as difference. The resulting signal was then upsampled to
1200 Hz to allow a better localization of QRSs.

QRS detection was performed by a threshold on the ab-
solute amplitude of a filtered derivative signal. This thresh-
old was updated at each new detection and was changed
with the temporal distance from the previous QRS. The
fiducial point of each QRS was selected as the time occur-
rence of the maximum (minimum) of the signed derivative
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signal. The beginning and the end of QRS were estimated
by the crossing of derivative through 0.25 threshold.

AF may manifest on the ECG signal as a weak oscilla-
tion with frequency in the range 2-10Hz. This oscillatory
component may be hidden, in the ECG spectrum, by the
high QRST power, therefore a QRST cancelling procedure
was applied. This was based on approximating each QRST
by Singular Value Decomposition (SVD) method. The sig-
nal around each QRS was weighted by a trapezoidal win-
dow and stored in the columns of the matrix X, which was
decomposed by SVD. A matrix Xr was then rebuilt from
the SVD decomposition using a reduced number of eigen-
vectors (2 or 3). Its columns contains only the signal com-
ponents which are powerful and synchronous thus they ap-
proximated the original signal interval around the QRS. A
signal containing almost only the ventricular origin com-
ponent was obtained by unweighting the estimated QRS
segments and connecting them with a straight line. This
signal was subtracted from the original ECG obtaining a
residual signal where the AF component was enhanced.

2.2. Feature extraction and selection

The extracted features can be categorized in three types:
1) computed on the ECG signal, 2) derived from the RR
series and 3) obtained combining QRS morphology and
rhythm. ANOVA was used for feature pre-selection and
tuning, then the stepwise discriminant analysis with Rao’
V criterion for feature inclusion was applied to select the
final feature set (30 features).

In the following, a generic description of the selected
features is reported, for details see the submitted code:

1) the power of the signal obtained as the difference
between the preprocessed and the original ECG signal;
the spectral power and the peak in the 4-10 Hz band of
the residual signal obtained by canceling the QRST com-
plexes; the max, the mean and the standard deviation of the
QRS width, obtained as the difference between the QRS
offset and onset provided by the QRS detector; features
extracted from the SVD of a matrix whose columns con-
tain time aligned QRS samples 150ms before and 200 ms
after the QRS reference point;

2) the mean, the min and the max value of the RR inter-
vals; the mean value of the RR intervals below the thresh-
old of 0.7 s and the mean value of RR intervals above the
threshold of 1.2 s; the root mean square of the succes-
sive differences (RMSSD) [4]; the mean of the absolute
weighted successive difference (Mawsd); the coefficient
of sample entropy (CoSEn) [14]; the turning point count
(TPC) [4]; the Katz Fractal Dimension (KFD) [17];

3) the ratio between the QRS amplitude and the beat pre-
maturity where the beat prematurity was computed in two
ways: ratio between the actual RR value and the trimmed
mean on a moving window of 5 RR values (AtypBeatPr);

ratio between the actual RR value and the successive RR
value (AtypBeatPr1).

Some of the extracted measures were log-transformed to
get a more symmetrical distribution.

2.3. Classification

In this study, we applied the LS-SVM classifier pro-
posed by Suykens [18] which is derived from the Vapnik’s
SVM classifier [19]. The binary LS-SVM is formulated as

min
w,b,ξi

(
‖w‖2 + γ

n∑
1

ξ2i

)
subject to the equality constraints
yi
[
wTϕ (xi) + b

]
= 1− ξi for i=1,..,n

where w∈Rn are the hyperplane coefficients, xi is of the
i-th feature vector, yi is the target class, b∈R and γ∈R+

0.
The function ϕ : Rm → Rn maps the feature xi∈Rm to
the high dimensional space Rn. The regularization param-
eter γ weights the sum of the squared classification error ξ2

such that misclassifications can be tolerated. This parame-
ter trades off classification errors versus a smooth decision
surface.

LS-SVM involves a least squares cost function with
equality constraints so the solution can be obtained by
solving a system of linear equations in the transformed
space. Defining a positive definite kernel
k (xi, xj) = ϕ (xi)

T
ϕ (xj)

the LS-SVM classifier formulation results:

y (x) = sign

[
n∑
1

αiyiK (x, xi) + b

]
The chosen kernel function K (·, ·) was the radial basis
function (RBF): K (x, xi) = exp

[
−‖x− xi‖2 /σ2

]
The multiclass categorization problem is solved by a set

of binary classifiers. We chose the “one-versus-one” cod-
ing [20], consisting in a set of m (m− 1) /2 binary clas-
sifiers, each discriminating between two classes. We used
the LS-SVM toolbox [18] (LS-SVMlab) which provides a
tuning function aimed at optimizing, for every binary clas-
sifier, the regularization parameter γ and the parameter σ2

of the RBF kernel. Crossvalidation (10 fold) was applied.

3. Results

3.1. Feature discriminant power

According to the ANOVA analysis, in the multi-
class comparison, the CoSEn (F=1708) and the Mawsd
(F=1533) were the features with the most discriminant
power.

In particular, performing every between classes
ANOVA, Mawsd had the maximal F in discriminating nor-
mal and AF rhythms (F=8136) while the CoSEn was the
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most powerful in discriminating between AF and other
rhythms (F= 2143) as shown in the histograms in Figure
1 and Figure 2. KFD was the most powerful in the dis-
crimination between normal and other rhythms (F=1705)
as observed in Figure 3. In all the figures, the areas of
the histograms for each class are normalized to one, so the
amplitudes estimate the class-conditional probability den-
sities.
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Figure 1. Histograms of Mawsd for normal (N) and atrial
fibrillation (A) rhythms.
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Figure 2. Histograms of CoSEn for atrial fibrillation (A)
and other (O) rhythms.

3.2. Least Squares SVM

The LS-SVM classifier provided the following perfor-
mance on the training set (before the final relabeling of the
dataset records [15]): F1 Normal rhythm= 0.94; F1 AF
rhythm: 0.91; F1 Other rhythm= 0.86; Global F1= 0.90
[15]; (F1 Noisy rec= 0.78). The confusion matrix obtained
on the training set is reported in Table 1.

Our software was uploaded to the challenge website for
testing. The global F1 score, on the hidden test data set, af-
ter the final relabeling, resulted 0.81 obtaining the twelfth
place in the ranking of results with only 2 cents from the
best (0.83).
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Figure 3. Histograms of KFD for normal (N) and other
(O) rhythms.

Table 1. Confusion matrix on training set. N: normal, A:
atrial fibrillation, O: other, P: noisy, e: estimated.

eN eA eO eP
N 4946 6 85 13
A 32 658 43 5
O 474 33 1939 10
P 66 5 13 200

4. Discussion and conclusion

In this study, we proposed an approach for discriminat-
ing between normal, AF, other rhythms and noisy ECG
records. We extracted measures from the overall ECG
signal, from each QRS and from the RR series for a
better characterization and discrimination of the different
rhythms.

The high efficiency of CoSEn in detecting AF, which
is related to the increased atrial signal irregularity, con-
firms previous studies [12,21]. Moreover, we observed that
CoSEn is the most powerful feature in multi-class discrim-
ination and in the discrimination between AF and other
rhythms.

We also introduced a novel feature, the Mawsd, which
showed the highest discriminant power in the discrimina-
tion between AF and normal rhythms and a high discrimi-
nant power in multi-class discrimination.

The problem of discriminating between normal and
other rhythms was the most complex. Among the features
computed, the KFD appeared to be the most discriminant
one, which could be due to the higher fractal properties of
RR series with ectopic beats [22].

The application of the LS-SVM classifier on the train-
ing set provided quite high performance. In particular, as
it can be observed from the confusion matrix, the classifier
seems particularly efficient in discriminating between nor-
mal from AF rhythms and AF from other rhythms while it
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is critical in discriminating normal from other rhythms.
The marked decreasing in performance, between the

training set (F1=0.90) and the hidden test set (F1=0.81),
points out the poor generalization properties and the over-
fitting of our estimated classification model. In particular,
a strong decrease of F1 index occurs for the Other rhythm
(training set F1= 0.86; test set F1= 0.72, before relabeling).

It is well known that SVM with Kernel extension, work-
ing in a higher-dimensional feature space, may suffer by
an increasing of the generalization error. Moreover, in LS-
SVM approach, sparseness of αi is lost and all the training
observations are considered as support vectors.

In the future, the performances of the proposed algo-
rithm could be improved in three ways. First, more dis-
criminant features could be introduced focused on the dis-
crimination between normal and other rhythms. Second,
implementing LS-SVM pruning algorithms to decrease the
generalization error. Third, testing other classification ap-
proach with higher generalization capabilities.

An accurate classification of cardiac rhythms would be
important in the clinical practice for the implementation of
the specific treatment.
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