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Abstract 

Sport-related sudden cardiac death (SRSCD), defined 

as “death occurring during sport or within one hour of 

cessation of training”, is the leading cause of death in 

athletes. SRSCD occurs in the presence of underlying 

cardiovascular diseases, some of which may be identified 

by processing electrocardiographic recordings acquired 

during training (TECGs). A fast and accurate processing 

of TECGs during or immediately after training is 

challenging since TECGs are typically highly corrupted by 

noise and interferences, which may jeopardize their 

interpretation and identification of abnormal 

morphologies. The present study evaluated the ability of 

GPU-based Segmented-Beat Modulation Method (GPU-

SBMM) to provide a noise-free estimation of TECGs, and 

to improve the algorithm by GPU acceleration to make it 

compatible with modern hardware. In this research, 19 6-

to-10 min TECGs (sampling frequency: 256 Hz), acquired 

from 8 subjects while performing 4 different exercise tasks 

(walk, run, low-resistance bike and high-resistance bike), 

were analyzed. Results indicate that GPU-SBMM 

application yielded a significant increase of SNR(dB) 

(from 1±5 dB to 19±5 dB; p<10-12), also when stratifying 

by exercise tasks. Additionally, a considerable average 

speedup of 7.67x is achieved using NVIDIA GeForce 740M 

GPU processor. 

 

 

1. Introduction 

Sport-related sudden cardiac death (SRSCD), defined as 

“death occurring during sport or within one hour of 

cessation of training”, is the leading cause of death in 

athletes. A recent estimate suggests that 1 in 40,000 to 1 in 

80,000 athletes per year [1] suffer from a sudden cardiac 

event resulting in either death or a non-fatal arrhythmia. 

This occurrence is still 3-4 times more often for athletes as 

compared to non-athletes [2]. This increase in the events of 

SRSCD in athletes in recent past poses a serious concern 

for the physicians and trainers responsible for the health 

and well-being of players [3]. Davide Astori (1987-2018) 

aged 31, Neil Fingleton (1980-2017) aged 36, Fabricio 

Paulino de Melo (1990-2017) aged 26 and Bernardo 

Ribeiro (1989-2016) aged 26 are a few examples of 

professional athletes who lost their lives due to sudden 

cardiovascular arrest lately and the incidents left families 

and fans completely heartbroken and full of questions.  

SRSCD occurs in the presence of underlying 

cardiovascular diseases, some of which may be identified 

by processing electrocardiographic recordings (ECG) 

acquired during training (TECG), eventually using 

wearable devices [4]. According to data, the probability of 

the ECG to detect underlying cardiovascular abnormalities 

that could place the athlete at risk of SRSCD is superior to 

that of physical examination and history [5,6]. However, 

TECGs in the acquired raw form are affected by several 

additional noise factors such as electrode motion artefacts, 

muscular artefacts emanating from intense and regular 

physical activities like running, walking, gym training etc. 

that can make the signal of interest clinically useless [7]. 

Additionally, the transmission of large amount of TECG 

data consumes a great deal of energy and reduces the 

battery life of both the wearable device and the processing 

platform [8]. To extend battery life, high-end processing 

platforms are required to have in-time identification and 

alert generation for prevention of SRSCD. The 

Segmented-Beat Modulation Method (SBMM) [9,10] 

provides a template-based ECG filter with physiological 

heart-rate and morphological variability. It has previously 

been tested in applications relative to abdominal fetal ECG 

[11] and electromyography filtering from ECG corruption 

[12], but never to filter TECG. The highly parallelizable 

and independent nature of data processing with SBMM 

makes it suitable to be implemented on high performance 

computing programming structures and platforms. A CPU-

based approach uses single instruction single data (SISD) 

programming structure executing one program statement 

operating on one data stream at a time. Whereas, GPU 

architecture is characterized by single instruction multiple 

data (SIMD) feature [13], which allows operations on 

multiple data points simultaneously. GPU provides a high-

performance hardware platform for faster simulations. 

Thus, in this work, GPU-based SBMM (GPU-SBMM) is 
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proposed as performance improved version of the 

previously proposed CPU-based SBMM (SBMM) for the 

denoising of TECG data. 

 

2. Materials and Methods 

2.1. Data 

Single-channel TECG recordings (sampling frequency: 

256 Hz) from 8 subjects (3 male, 5 female), aged 22-32 

years (mean 26.5±5.5 years) were used. Measurements 

were taken using an Actiwave (CamNtech, Cambridge, 

UK) ECG recorder placed on the chest while participants 

were asked to perform one or more exercise tasks (walk, 

run, low-resistance bike and high-resistance bike) as 

summarized in Table 1. Data were taken from the “Wrists 

PPG During Exercise” database by Physionet [14,15] 

All TECG recordings were band-pass filtered through a 

bidirectional 3rd-order Butterworth filter with cut-off 

frequencies of 0.5Hz and 40Hz. After that, the baseline was 

removed. Baseline was computed as a cubic spline 

interpolation of fiducial points, placed 90ms before R-

peaks. Annotations of the reference TECG R-peak 

positions were provided in the Physionet database. The 

mean HR (heart rate) and HRV (HR variability measured 

as RR-interval standard deviation) was 104±25 bpm and 

54±26 ms, respectively. 

 

2.2. GPU-based Segmented-Beat 

Modulation Method (GPU-SBMM) 

GPU-SBMM was implemented in MATLAB using 

Parallel Computing Toolbox built-in functions. GPU- 

SBMM takes as input the noisy TECG signal, the R-peak 

positions vector and some initial settings (TECG sampling 

frequency and gain). To enter GPU-SBMM processing, 

data have been copied from the CPU to the GPU device 

through the ‘gpuArray()’ function. Each cardiac cycle, 

which in GPU-SBMM can be processed independently 

from the others, was segmented into QRS and TUP 

segments.  
After the segmentation of cardiac cycles into QRS and 

TUP segments, a resampling of TUP segments is 

performed to match the TUP length of median cardiac 

cycle (mCC) of all beats in a single recording. A peak 

correction is applied to identify and correct falsely detected 

peaks.  
Finally, GPU-SBMM performs a filtering procedure 

that reconstructs a clean TECG signal from the one 

corrupted by noise recording. All the for-loops for 

segmentation, modulation, correlation optimization and 

reconstruction steps are implemented as vectorized cell 

array statements using ‘cellarray()’ function. The 

computed clean TECG from the GPU processor is then 

sent back to CPU using ‘gather()’ function. The 

distribution of workload for GPU-SBMM is shown in 

Figure 1. 

 

2.3. Computing Platform 
 

All GPU experiments were performed on NVIDIA 

GeForce GT 740M processing machine with compute 

capability 3.5 based on the Kepler architecture and 64GB 

GPU memory with bandwidth of 173 GB/s.  

All CPU experiments were performed on Intel® Core i5 

with 2 cores and an operating frequency of 1.8 GHz. 

 

 
Figure 1. Distribution of workload for GPU-based Segmented-Beat Modulation Method.
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2.4. Assessment of signal quality 

improvement 
 

To quantify the reliability of the GPU-SBMM in 

reducing the level of noise affecting the TECG signals, the 

signal-to-noise ratio (SNR) expressed in decibel (dB) was 

computed before (noisy) and after (clean) GPU-SBMM 

processing according to equation (1):  

 

𝑆𝑁𝑅 (𝑑𝐵) = 10 log10 ⌊(
𝐴𝑆𝑖𝑔𝑛𝑎𝑙

𝐴𝑁𝑜𝑖𝑠𝑒
)

2

⌋ ,                  (1) 

 

where ASignal (mV) is the signal amplitude and ANoise (mV) 

is the noise amplitude. Amplitudes of TECGs being close 

to deterministic (pseudo-periodic) signals, were computed 

as mean of the maximum-minus-minimum values over the 

beats. Whereas, amplitudes of noise signals being close to 

Gaussian stochastic signals were computed as 4 times 

standard deviation [12]. All amplitude values were 

computed over the entire length of the study records. 

 

2.5. Assessment of speed of execution 

improvement 
 

For each TECG signal, GPU-SBMM runtime (tGPU-

SBMM, s) was computed. Moreover, each TECG signal was 

processed with the sequential SBMM implementation [10] 

and the SBMM runtime (tSBMM, s) was computed. To show 

the effect on performance after GPU resource 

enhancement, speedup factor (Speedup(x)), defined by 

Amdahl’s law [16] as an improvement in the speed of 

execution of a task on two computing architectures with 

different resources, was computed for each TECG signal 

using equation (2): 

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 (𝑥) =
𝑡SBMM

𝑡GPU−SBMM  
.                (2) 

 

2.6. Statistical analysis 

 
Differences between SNR before and after GPU-

SBMM processing have been evaluated by using a paired 

Student’s t-test. Values are reported as mean ± standard 

deviation (SD), unless otherwise specified. The two-sided 

significance level was set at 5% (p<0.05). 

 

3. Results 
 

An example of the TECG signal recorded during 

exercise before and after GPU-SBMM processing is shown 

in Figure 2.  

SNR values for each activity before and after GPU-

SBMM processing are given in Table 2. Mean SNR values

Table 1. Duration of TECG signals recorded for different 

subjects and activities. 

Subject ID Walk Run LRB HRB 

1 9:48 - 9:39 9:18 
2 6:39 - 5:41 6:54 
3 4:47 5:07 4:54 4:41 
4 - 4:52 - - 
5 - 5:08 4:40 - 
6 5:36 5:02 4:40 - 
7 6:42 4:47 - - 
8 3:40 - - - 

LRB-Low-Resistance Bike 

HRB-High-Resistance Bike 

 

computed for all noisy TECG and clean TECG signals 

were 1±5 dB and 19±5 dB, respectively; a significant 

increase (p<10-12) in SNR was observed after GPU-SBMM 

processing. Stratifying for each exercise task, a significant 

increase in SNR was also found (Table 2). 

 The calculated SBMM and GPU-SBMM runtimes are 

shown in Figure 3. The GPU implementation reduces the 

runtime of the noise reduction algorithm from 4.82 s to 

0.63 s. Hence, the speedup achieved is 7.67 times higher 

than that of the CPU-based SBMM implementation. 

 

4. Discussion 

The present study proposed GPU-SBMM as 

performance improved version of SBMM for the denoising 

of TECGs. In the beat-wise segmentation, modulation and 

signal reconstruction steps characterizing GPU-SBMM, 

each beat can be processed simultaneously, because the 

processing of any individual beat is independent of the 

other, which is ideal for GPU processing. Because of the 

advantage that MATLAB is an interpreted language, 

inefficient for-loops in SBMM implementation have been 

replaced by vectorized statements to further optimize 

runtimes.  
Improvement in SNR showed that GPU-SBMM is an 

effective and fast method for removal of exercise-induced 

noise factors in the TECG data. Comparative testing 

showed that the average speedup achieved for the four 

training activities is 7.67x. Offloading the heavy part of 

computation to the GPU processor which can either be a 

mobile platform or a desktop, the performance of the 

algorithm is increased. This allows an effective processing 

and analysis of TECG signals measured from wearable 

sensors through innovative software applications for the 

prevention of SRSCD [4]. 
For future recommendation, full benefits of parallelism 

for GPU-SBMM might be seen when used with big data 

(larger datasets or online ECG data processing). Moreover, 

a high denoising efficiency with TECGs makes GPU-

SBMM a useful method for a wearable ECG sensing 

apparatus/setting. 
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Table 2. Comparative evaluation of SNR by activity. 

Exercise  

tasks 

No. of 

TECG

s 

Before 

SNR 

(dB) 

After 

SNR 

(dB) 

Walk 6 -2±3 18±5* 

Run 5 1±7 20±7* 

Low Resistance Bike  5 3±5 20±5* 

High Resistance Bike 3 3±6 20±6* 

  * p<0.05 

 

 
Figure 2. TECG plotted for the exercise task High 

Resistance Bike for duration of 3 seconds.  

 

 
Figure 3. Runtime for CPU-based SBMM and GPU-based 

SBMM on NVIDIA GeForce GT 740 processor. 

 

5. Conclusion 

GPU-SBMM is an efficient and accurate algorithm for 

filtering TECG, typically affected by high level of noise. 

Thus, it represents a potentially useful tool to fight 

SRSCD. 
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