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Abstract 

All-optical high-throughput systems allow simultaneous 

high resolution action potential (AP) and Ca2+ transient 

(CaTr) measurements from cardiomyocytes within 

multicellular context, offering means to speed up in vitro 

drug tests. Here, we aim to develop experimentally-

constrained in silico models of human induced pluripotent 

stem cell-derived cardiomyocytes (hiPSC-CMs) and 

hiPSC-CM populations to predict drug effects in humans, 

by leveraging functional data obtained by all-optical 

means. Using multi-objective genetic algorithms (MoGAs), 

we constructed three control populations of in silico 

hiPSC-CMs, constrained with experimental data of APs 

and CaTrs recorded at room temperature and non-paced 

conditions from three different plates containing hiPSC-

CM syncytia. We then simulated the effect of increasing 

doses of Diltiazem (130 models), Cisapride (200 models) 

and Astemizole (200 models) in the three populations, 

respectively. Comparing model predictions with the 

experimental drug administration (not used for the 

optimization/calibration of the populations) revealed good 

agreement with experiments: e.g. Diltiazem shortened APs 

while Astemizole and Cisapride prolonged APs. 

 

 

1. Introduction 

Optical approaches offer contact-free high-resolution 

measurements of key electromechanical parameters in 

cardiomyocytes, e.g. action potentials (AP), Ca2+ transients 

(CaTr), or contraction. Recently, all-optical high-

throughput systems allowed simultaneous AP and CaTr 

measurements from cardiomyocytes within multicellular 

context, offering means to speed up in vitro drug tests 

[1,2]. In this work, we aim (i) to calibrate/optimize 

populations of in silico models of human induced 

pluripotent stem cell-derived cardiomyocytes (hiPSC-

CMs) by means of simultaneous optically recorded data of 

APs and CaTrs in control conditions and (ii) to assess the 

predictive power of our in silico populations during the 

administration of three specific drugs (Diltiazem, 

Cisapride and Astemizole) plus a fourth drug (Dofetilide) 

as positive control. 

 

2. Methods 

2.1. Experimental dataset 

The experimental dataset consists in APs and CaTrs 

optically recorded from hiPSC-CMs syncytia (CDI iCell2 

cardiomyocytes) at room temperature under non-paced 

conditions. Recordings were performed in control 

conditions and after administration of one of the following 

drugs: Diltiazem (mainly an ICaL blocker), Cisapride and 

Astemizole (both mainly IKr blockers). In detail, recordings 

were performed on three plates (384-well format), where 

APs and CaTrs were recorded in negative control 

(administration of 0.1% DMSO, C-) and then administered 

with four increasing doses (D1, D2, D3 and D4) of 

Diltiazem (Plate 1), Cisapride (Plate 2) and Astemizole 

(Plate 3). Furthermore, 0.5 nM Dofetilide was tested on all 

the plates as positive control (C+). APs and CaTrs were 

recorded from five C- samples and from six samples each 

of C+, D1, D2, D3 and D4. Experimental biomarkers for 

the three plates are reported in Table 1. For each 

biomarker, we had five measurements in C- and six 

measurements in the other conditions. Biomarkers are: AP 

and CaTr cycle length (Vm CL and Ca CL), duration at 

30%, 50% and 90% of AP (APD30, APD50 and APD90) and  

Computing in Cardiology 2018; Vol 45 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2018.086



Table 1. Lower bounds (LB) and upper bounds (UB) for 

the five AP biomarkers and the six CaTr biomarkers for the 

three plates in C- conditions. Values in bold were 

computed as mean±2SD, values in italic were computed as 

mean±3SD, to be used in section 2.2.2. 

 

 Plate 1 Plate 2 Plate 3 

 LB UB LB UB LB UB 

Vm CL (ms) 
4989 8423 2172 4255 3079 5222 

4690 9019 1842 4712 3003 5461 

APD90 (ms) 
786 1145 938 1116 831 1275 

756 1196 916 1142 721 1386 

APD50 (ms) 
520 752 736 910 698 921 

504 772 717 934 672 958 

APD30 (ms) 
391 575 515 673 459 719 

377 586 502 693 438 767 

Vm Tri90-30 

(ms) 

393 571 418 478 253 564 

369 611 406 491 175 641 

Ca CL (ms) 
4997 8429 2174 4255 3084 5218 

4701 9028 1845 4711 3019 5455 

CTD90 (ms) 
904 2306 1564 2023 1434 2322 

554 2656 1541 2093 1310 2460 

CTD50 (ms) 
804 1163 979 1095 918 1149 

751 1194 972 1106 882 1178 

CTD30 (ms) 
644 903 828 903 761 931 

615 918 825 909 734 945 

Ca tRise 

(ms) 

221 373 331 413 286 443 

196 382 312 423 277 463 

Ca Tri90-30 

(ms) 

258 1545 727 1121 667 1424 

0 1867 681 1186 567 1545 

 

of CaTr (CTD30, CTD50, CTD90), AP and CaTr 

triangulation (Vm Tri90-30=APD90-APD30 and Ca Tri90-

30=CTD90-CTD30) and CaTr time to rise from 10% to 90% 

(Ca tRise). For each plate and biomarker, we considered as 

lower bounds (LBi, LB3SD,i) the smallest of mean-2SD and 

mean-3SD, while as upper bounds (UBi, UB3SD,i) the 

maximum of mean+2SDand mean+3SD of the five control 

measurements for the biomarker i (see Table 1, values in 

bold for ±2SD and in italic for ±3SD). 

 

 

2.2. In silico modeling 

2.2.1 Adapting the hiPSC-CM model to 

room temperature 

Simulations were performed with the recently published 

Paci2018 hiPSC-CM model [3], which was tuned and 

validated to simulate APs and CaTrs at 37°C. To simulate 

the aforementioned experiments, we adapted the model to 

room temperature (21°C) by rescaling the model time 

constants for the main ionic currents according to the Q10 

factors reported in Table 2.  

Table 2. Q10 factors to translate the model from 37°C to 

21°C [4–7]. 

 

Ionic current Q10 factors 

INa 2.00 

INaL 2.20 

ICaL 2.10 

If 4.50 

IKr activation 4.55 

IKr inactivation 3.08 

IKs  2.00 

Ito 2.00 

 

2.2.2 Multi-objective genetic algorithms 

Instead of a canonical approach to develop a population 

of in silico models, as in [8,9], here we opted for multi-

objective genetic algorithms (MoGAs) [10]: they allow the 

concurrent optimization of many fitness functions, to find 

an optimal population. We chose to sample the following 

22 parameters: (i) the maximum conductances/currents of 

INa, If, ICaL, Ito, IKs, IKr, IK1, INCX, INaK, IpCa, INaL, IRyR, ISERCA; 

(ii) activation and inactivation time constants of INa, ICaL 

and IRyR; (iii) adaptation time constant and half inactivation 

Ca2+ concentration of IRyR; (iv) ISERCA half saturation 

constant. We defined two fitness functions, based on AP 

and CaTr biomarkers, respectively. 

𝐸𝑟𝑟 = ∑ 𝑒𝑟𝑟𝑖

𝑁𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝑠

1

 

𝑒𝑟𝑟𝑖 =
(𝑏𝑖,𝑠𝑖𝑚< 𝐿𝐵𝑖)(𝑏𝑖,𝑠𝑖𝑚−𝐿𝐵𝑖)

2
+(𝑏𝑖,𝑠𝑖𝑚> 𝑈𝐵𝑖)(𝑏𝑖,𝑠𝑖𝑚−𝑈𝐵𝑖)

2

0.5(𝐿𝐵𝑖+𝑈𝐵𝑖)
, 

where bi,sim is the i-th simulated biomarker, LBi the i-th 

experimental lower bound for bi,sim, UBi the i-th 

experimental upper bound for bi,sim and Nbiomarkers the 

number of biomarkers computed on the experimental APs 

(5 biomarkers) and CaTrs (6 biomarkers). Shortly, if the 

simulated i-th biomarker is smaller than LBi or greater than 

UBi, the error is computed as the squared distance between 

the simulated biomarker and the bound, normalized by the 

center of mass of [LBi, UBi]. The biomarkers used to 

constrain the fitness functions are listed in Section 2.1 and 

Table 1. MoGAs parameters were: maximum number of 

models = 200 and maximum number of generations = 40. 

For each of the 200 parameter sets optimized by MoGAs, 

we then run the simulation up to steady state (500s) and re-

checked that all the biomarkers were included in the ranges 

[LB3SD,i, UB3SD,i], to include in the population also those 

parameter sets at the very edge of the ranges [LBi, UBi]. 

 

2.2.3 Drug tests 

To assess the predictive power of our three populations 

of hiPSC-CM models, we then simulated Diltiazem, 

Cisapride, Astemizole and Dofetile (C+) at the four doses 
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Table 3. IC50 and Hill’s coefficients (in brackets) for the 

four drugs in rows 2-7 [11]. The experimentally tested drug 

doses are reported in µM in rows 8-12. 

 

  Diltiazem Cisapride Astemizole Dofetilide 

Io
n

ic
 c

u
rr

en
ts

 INa 22.4 

(1.29) 

333.7 

(1) 

3 

(1.95) 

162.1 

(1) 

IKr 13.2 

(1.16) 

0.02 

(1.04) 

0.004 

(0.78) 

0.03 

(1.2) 

ICaL 0.76 

(1.14) 

11.8 

(1) 

1.1 

(1.66) 

26.7 

(1) 

D
o

se
s 

(µ
M

) C+ --- --- --- 0.0005 

D1 0.01 0.0032 0.0001 --- 

D2 0.1 0.01 0.001 --- 

D3 1 0.0316 0.01 --- 

D4 10 0.1 0.1 --- 

 

 
Figure 1. Spontaneous APs simulated by the Paci2018 

model at 37°C (green) and 21°C (blue). 

 

tested experimentally. Of note, the biomarkers computed 

on APs and CaTrs after drug administration were not used 

for the parameter set identification with MoGAs. Drug 

administration was simulated with the single pore block 

model on the three control populations, as in [8]. In Table 

3 we reported the IC50 and the Hill’s coefficients for the 

four drugs, together with the experimentally administered 

doses and the blocking effects on the ionic currents. 

 

3. Results 

Figure 1 compares the Paci2018 APs at 37°C and 21°C: 

as expected, the rate of spontaneous APs is slower and 

APD is longer at 21°C. This step helped also shifting AP 

and CaTr biomarkers closer to the experimental values 

recorded in C- conditions. MoGAs optimization produced 

three in silico control hiPSC-CMs populations, each 

representing the variability of a specific experimental 

plate. We then tested on each of these populations the 

corresponding drug which was tested experimentally. 

Specifically, Plate 1 (Diltiazem) contains 130 models, 

while Plate 2 (Cisapride) and Plate 3 (Astemizole) 200 

models. Figure 2, 3 and 4 show the model distributions 

within the [LB3SD, UB3SD] variability intervals of the 

biomarkers in each plate. For each biomarker, simulations 

and experimental variability ranges are reported in C-, C+, 

 
 

Figure 2. Diltiazem (D1, D2, D3, D4) and Dofetilide (C+) 

effects on the biomarkers, compared to control (C-). Red 

circles represent the experimentally recorded biomarkers, 

and the red bars the experimental variability intervals, for 

each dose. Blue diamonds are the simulated biomarkers. 

 

D1, D2, D3 and D4 of the plate-specific drugs (Diltiazem 

was not simulated at D4). The population biomarkers are 

perfectly included within the experimental variability 

ranges for C-, thanks to the calibration process. However, 

drug simulations (D1, D2, D3 and D4) are also in 

agreement with the drug-induced changes observed in the 

experiment, although these experiments were not used for 

the optimization process. For example, Diltiazem shortens 

APD90 and reduces Vm Tri90-30. Conversely, Cisapride 

and Astemizole prolong APD90 and CTD90, increase Ca 

tRise and the triangulation of both AP and CaTr. 

 

4. Conclusions 

In this work we proposed a proof-of-concept optimization 

of in silico populations by means of MoGAs. We observed 

in particular that by optimizing an in silico population on 

the control experiments of different plates, we then obtain 

qualitative agreement between simulated and experimental 

drug effects, without using for a following optimization the 

experimentally recorded data on the same plate after drug 

administration. However, for some of the biomarkers, e.g. 

APD50 and APD30, for all the three drugs, especially at the 

highest drug doses, the simulated drug effects look 

amplified compared to experiments, possibly due to non- 

specific and/or multi-channel drug effects experimentally 

that are not reflected in the model. This work therefore 
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Figure 3. Cisapride (D1, D2, D3, D4) and Dofetilide (C+) 

effects on the biomarkers, compared to control (C-). Red 

circles represent the experimentally recorded biomarkers, 

and the red bars the experimental variability intervals, for 

each dose. Blue diamonds are the simulated biomarkers. 

 

 

 

 
 

Figure 4. Astemizole (D1, D2, D3, D4) and Dofetilide (C+) 

effects on the biomarkers, compared to control (C-). Red 

circles represent the experimentally recorded biomarkers, 

and the red bars the experimental variability intervals, for 

each dose. Blue diamonds are the simulated biomarkers. 

shows that optically-obtained data are suitable for tuning 

populations of in silico models of hiPSC-CMs and that 

MoGAs represent an alternative, or can be combined, to 

canonical approaches for generating populations of in 

silico models. 
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