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Abstract

Objective: We model the signals acquired from intra-
partum cardiotocography (CTG), uterine pressure (UP)
and fetal heart rate (FHR), as an input-output system to es-
timate its dynamics in terms of an impulse response func-
tion (IRF). We aim to demonstrate discrimination of the
IRF gain between normal (N) and metabolic acidotic (MA)
fetuses with the state-space subspace approach, which in-
corporates noise-suppression and permits the use of non-
contiguous data. This is important because CTG data
is very noisy and missing data are common. Methods:
Recordings of 449 N, 419 MA and 85 severely patholog-
ical (P) fetuses were detrended and analyzed with 20-min
processing epochs. Results: 3/6 epochs in the last 60 min-
utes of recording before delivery showed statistically sig-
nificant differences in the class distributions of N and MA
fetuses the model gain parameter.

1. Introduction

Labour and delivery is routinely monitored electroni-
cally with sensors that measure maternal uterine pressure
(UP) and fetal heart rate (FHR), a procedure referred to
as cardiotocography (CTG). Temporary decreases in FHR
are known as decelerations and reflect events such as com-
pression of the umbilical cord by uterine contractions, mal-
function of the fetal heart muscle, or premature separation
of the placenta. Generally, larger insults are indicated by
recurring episodes of deep, long decelerations whose on-
sets occur late with respect to the uterine contractions. We
extract information from UP-FHR by treating the pair as
an input-output system using system identification to es-
timate system dynamics in terms of an impulse response
function (IRF).

A significant challenge to such modelling is that CTG
often contains intervals of missing data on the UP or
FHR signals. Signals with non-contiguous intervals were
ignored in [1, 2] using non-parametric linear regression,
which is inapplicable to such data. In [3] we applied
state-space techniques to extract more information from

data with non-contiguous intervals using recordings from
normal (N) and pathological (P) outcome classes. In
this study we extended this technique and applied it to
metabolic acidotic (MA) fetuses. These cases are impor-
tant because they have experienced hypoxia to the extent
of metabolic acidosis, yet have not sustained neurological
injury. Detecting these cases before injury occurs could
prevent pathological outcomes.

Increasing the number and amount of recordings
amenable to analysis with a discriminating technique has
the potential to warn clinicians on more cases and earlier
on when intervention could potentially avert the pathologi-
cal outcome. Using a database of CTG recordings labelled
with these three outcome classes, we compared the models
over the final three hours of labour.

2. Data

We used CTGs from singleton, term pregnancies having
no known congenital malformations, with at least 90 min
of tracing just prior to delivery. 449 the cases were normal
(N), 419 had developed MA (umbilical cord base deficit ≤
12 mmol/L) and 85 severely pathological (P) fetuses. The
data come from hospitals that did routine umbilical cord
blood gas measurements shortly after birth.

3. Methods

3.1. Overall processing

We modelled UP-FHR system dynamics by linear sys-
tem identification. A preprocessing step cleaned and seg-
mented the UP and FHR into 20 min epochs of input
and output data (u and f ). Next, using subspace system-
identification methods, we estimated the IRF ĥ and deter-
mined the best values for the IRF delay d.

3.2. Preprocessing

The CTG data was recorded at 4 Hz in a clinical setting,
so it was subject to specific types of noise. The loss of

Computing in Cardiology 2018; Vol 45 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2018.367



sensor contact can temporarily interrupt the UP or FHR
signals, and interference from the (much lower) maternal
heart rate can corrupt the FHR. These both appeared in the
signal as a sharp drop to much lower amplitude followed
by a sharp signal restoration.

3.3. Linear model

Let the input, UP, and output, FHR, at time sample k
(k = 1 . . . N ) be denoted by u(k) and f(k), respectively.
The linear response f(k) of a discrete-time system to an
arbitrary input signal u(k) is given by the convolution sum:

f(k) =

d+M−1∑
i=d

(hi∆t)u(k − i) = h ∗ u(k) (1)

where ∆t is the sampling period, and h is the
IRF beginning at delay sample d, and of length
M . u(k) is the length-M vector of input samples
[uk−d−M+1 . . . uk−d−1 uk−d] used to compute f(k)
at sample k. For causal (physically realizable) systems,
d ≥ 0, but under certain conditions, such as input mea-
surement delay, d may be negative [4].

3.4. Subspace method

A previous study directly estimated h above using lin-
ear regression and the pseudo-inverse of the input auto-
correlation matrix [1]. This approach assumed contiguous
input and output data (i.e., with gaps no greater than 15s
in length). However, we wanted to relax this requirement
in order to permit processing more of the data, which often
included temporary gaps of longer duration.

Subspace methods are well-suited to this problem be-
cause they permit such non-contiguous data to be included
in the estimation. In addition, they are very applicable to
noisy data, such as CTG, because of their general noise
model and inherent use of singular value decomposition
(SVD) within a non-iterative, regression-based estimation.
As well, by incorporating an estimate of initial state, all
epoch data are used in subspace model estimates; data need
not be discarded due to initial filter-length effects. Finally,
they require very few tuning parameters apart from a scal-
ing factor s.

The PO-MOESP subspace method [5] is based on a
state-space input-output model that incorporates process
and measurement noise, written in innovation form as:

x(k + 1) = Ax(k) + Bu(k) + Ke(k)

f(k) = Cx(k) + Du(k) + e(k) (2)

where x(k) is the state, the innovation e(k) is a white-noise
sequence and K is the Kalman gain. Whereas direct use of
Kalman filter methods require matrices A, B, C and D to
be specified, these parameters and the initial state x(0) are

all estimated by subspace methods. As in [3], we used
the LTI-Toolbox [6] implementation of PO-MOESP for
our single-input, single-output (SISO) state-space model
estimates.

This avoids direct estimation of h and the need for
length-M contiguous data as in (1), but h is available indi-
rectly as

h(k) =

 0 k < 0
D k = 0

CAk−1B k > 0
(3)

We found that using no direct feedthrough term (i.e., con-
straining D=0) produced the most consistent models with
the best fidelity on the output prediction, as measured by
the minimum description length (MDL).

The order r (i.e., the state-vector dimensionality) of the
state-space model was selected by inspecting the most sig-
nificant eigenvalues of the system matrix A. By exper-
imentation, we found that regardless of the value of the
maximum order s we provided, a system order r = 2 gen-
erally produced models with the best fidelity. This finding
was consistent with a previous study that fitted a second-
order continuous low-pass system to the IRF [7].

By varying s over selected values 2j , j = 3, 4, . . . 7,
we produced multi-resolutional models that adapted to the
time constants of the system. In this study we restricted j
to 6 to be able to compare all models at the same resolu-
tion.

3.5. Delay detection

As described in [1], input measurement delay associ-
ated with the UP sensor may result in a negative IRF de-
lay. In contrast, the physiological response is expected to
have a positive delay. The combination of these two delays
can produce an FHR response that occurs before (negative
d) or after (positive d) the measured UP contraction on-
set. Therefore, we developed an algorithm to determine
the best d for each epoch. We set the bounds on d to -20
to 80 s and ranked candidates according to their minimum
description length (MDL).

4. Results

Table 1 shows the number of epochs processed and the
number of valid epochs (i.e., epochs which produced suc-
cessful models) for each class. Roughly half of the epochs
were valid, with proportions of 50.4%, 49.5% and 47.8%
for N, MA and P classes, respectively. These proportions
were not different with statistical significance, as deter-
mined by the chi-square proportion test.

Fig. 1 shows the time progression of the model gain G
for each class, showing the standard error about the mean.
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Class nEpochs nEpochs valid %
N 5116 608 50.4
MA 5667 2754 49.5
P 1235 2511 47.8

Table 1. Number of processed/valid epochs and percent-
age by class

The P cases were different from the N cases with statistical
significance in 7 of the last 8 epochs (i.e., the last 75 min).
The MA cases were different from the N cases in 3 of the
last 6 epochs (i.e., the last 60,min). To better show the long
tails of the per-epoch distributions, Fig. 2 shows the same
time progression as a box and whisker plot. The model
delay parameter d did not display significantly different
results, mainly due to the fact that UP and FHR periodicity
occasionally causes models with short delays to be chosen
by the optimality criterion instead of long ones (and vice
versa), causing noise in the delay estimates.
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Figure 1. Time progression (mean±standard error) of
model gain G for each class (N in black, MA in blue and
P in red) in the last 180 min of labour and delivery. For
each epoch, asterisks indicate statistically significant dif-
ferences (p < 0.05, Kolmogorov-Smirnov test) between
MA-N (blue) and P-N (red) class distributions, respec-
tively.

5. Conclusions

We have shown that in addition to the statistically sig-
nificant differences between P and N classes, which have
been demonstrated in previous work [3], there are differ-
ences in the MA-N distributions. In addition, these differ-

ences appear 60 min before birth, allowing sufficient time
to intervene with a Cesarian section. In future work, we
will further examine whether the delay parameter d might
be discriminating between MA and N cases.
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Figure 2. Time progression (box-whisker plot) of model gain G over time for each class, corresponding to Fig. 1. Boxes
show interquartile range and whiskers include data within 150% of the interquartile width. The number of valid models
at each epoch are also shown for each class. The x-axis show the epochs before delivery correspoding to the 10 min
increments of Fig. 1
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