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Abstract

Sepsis is a life-threatening condition that has to be
treated at an early stage. Doctors use the Sequential
Organ Failure Assessment score for the earliest possible
recognition. In addition, the practitioner’s many years
of experience help in order to facilitate an immediate re-
sponse. Mortality decreases with every hour that sepsis is
detected and treated with antibiotics. In this years Phys-
ioNet/Computing in Cardiology Challenge the objective is
to automatically detect sepsis six hours before the clinical
prediction. This paper describes the implementation of an
Long Short-Term Memory network for an early detection
of sepsis in provided hourly physiological data. An utility
score of 0.29 was achieved when testing on the full hidden
test set. All entries were submitted using the team name
”404: Sepsis not found”.

1. Introduction

Sepsis is a highly lethal and a very cost-intensive disease
[1]. Hospitals invest more money in curing sepsis than any
other illness [2]. A major problem hereby is the fact that
many sepsis patients in a hospital are not correctly diag-
nosed at admission. Overall, early detection of sepsis is
the most critical factor; each hour of delayed diagnosis in-
creases the mortality by about 4-8 % [3, 4]. The topic of
this years PhysioNet/Computing in Cardiology Challenge
is to address this circumstance and to propose an algorithm
that is able to detect a sepsis infection from data that is
gathered at an intensive care unit (ICU) [5]. A major dif-
ficulty is to predict sepsis from lots of different vital signs
and laboratory values that are however not sampled in pe-
riodic intervals, meaning that a very sparse dataset is the
basis for training and testing.

When analyzing and classifying time series data it is
crucial to take past information into account. Different
architectures in pattern recognition and machine learning
were proposed for this task. One of them are recurrent neu-

ral networks (RNNs), which are able to store information
over a time interval. However, during training of these net-
works using backpropagation, the error signals either tend
to vanish or explode over time. This problem is known
as vanishing or exploding gradients. Long Short-Term
Memory (LSTM) networks are designed to overcome this
deficit. In this paper, an ensemble of five LSTM networks
were implemented. Each model is trained on a different
subset of the training data. The five predictions at each
time step are combined to get one probability value. The
following chapters will describe LSTM networks in gen-
eral, the methods that were utilized, including the dataset,
the extracted features, and the model parameters, as well
as the results that were observed.

2. Long Short-Term Memory

First introduced by Hochreiter and Schmidhuber in 1997
[6], LSTMs are capable of learning long-term dependen-
cies and to remember information for long periods of time.
LSTMs have since been used for lots of applications like
translation, text prediction and generation, natural lan-
guage processing, audio and image analysis [7–9].
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Figure 1. Computation flow of an LSTM network consist-
ing of the output gate ot, the input gate it, the forget gate
ft and the cell state ct. [6, 10]

The structure of an LSTM cell is shown in Fig. 1. The
network produces an embedding ht ∈ R′

for each input
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xt ∈ R. At every time step t, the network gets two inputs
xt and ht−1. xt are the features from the input signal at
that time step while ht−1 is the LSTM output at the pre-
ceding time step. These inputs are used to calculate the
states of the input gate it, the forget gate ft, the output
gate ot, and the cell ct. [6, 11]

The input gate decides the amount to which the cur-
rent input influences the state of the cell, while the forget
gate may gradually reset the cell’s state. The output ht
is derived from the current state of the cell and the out-
put gate ot. The exact formulae for all components are as
follows [10]:

it = σ(Wxixt +Whiht−1 + bi), (1)
ft = σ(Wxfxt +Whfht−1 + bf ), (2)
ot = σ(Wxoxt +Whoht−1 + bo), (3)
ct = ft � ct−1 + it � tanh(Wxcxt+

Whcht−1 + bc), (4)
ht = ot � tanh(ct), (5)

where all W s and bs are trainable parameters, σ denotes
the element-wise sigmoid function and � is the element-
wise product. LSTMs overcome the issue of exploding
or vanishing gradients by using a so-called “constant error
carousel” (CEC) which corresponds to the loop of ct and
ct−1 in Fig. 1. ct is the state of the cell which allows infor-
mation to flow through easily. Errors are not exponentially
degraded by going through the same weights of the RNN
in each time step but remain in the CEC. This way, errors
can flow back for an almost unlimited time whereby long-
term dependencies can be modeled. [7, 10]

3. Methods

The following subsections briefly describe the provided
ICU patient data which build the basis for feature extrac-
tion and training of the designed LSTM model.

3.1. Data

The ICU data made available for the challenge consist
of overall 40 336 datasets from two separate hospital sys-
tems which split in 20 336 sets from hospital A and 20 000
sets from hospital B. In addition, there is a hidden test set
from a third hospital system C on which the algorithms of
all participants are evaluated on. Each dataset consists of
a summary of hourly collected data on vital parameters,
laboratory values and descriptions of one subject. A to-
tal of 40 different variables are provided, of which 8 are
vital parameters, such as heart and respiratory rate, blood
pressure or temperature, 26 are laboratory values from the
blood, such as bilirubin, thrombocytes or creatinine and fi-
nally 6 are demographic values such as age, gender and

hospital admission time. The whole list of parameters can
be found in [5]. In addition, a sepsis label is assigned to
each hourly summary. The label is 0 until the time when
sepsis is present according to the Sepsis-3 criteria, then the
label changes to 1. In addition, the label has been moved
forward by 6 h since early detection should be performed.

3.2. Feature Extraction

Overall a set of 40 hourly acquired parameters of each
subject is provided. The collection of vital signs is done
regularly almost every hour but the laboratory values are
recorded only once per day, which means that the hourly
data which are fed to the algorithm are very sparse. There-
fore, additional features are generated for the hourly up-
dated values with which the LSTM model should train bet-
ter.

Figure 2. The combination of features. In brackets the
number of the given parameter from the overview in [5].

In total, 129 features are extracted which are summa-
rized in the block diagram in Fig. 2. The different features
are explained in detail below:
Measurement Data Altogether 38 of the 40 given param-
eters are used for training and prediction without further
processing. The only values that are not used are the ad-
ministrative identifier specified in “Unit1” and “Unit2”.
Last Reliable Since many of the values are not collected
hourly and the vector of the features would thus consist of
NaNs almost exclusively, the last reliable value feature cor-
responds to the number of hours passed since a value was
last observed for this parameter. This generates another 38
features.
Differences With these features the change over time of
the newly collected data should be emphasized further. For
features 1 to 34, the difference to the previous measured
value is included as a feature.
qSOFA The so-called “quickSOFA” is a simple bedside
measure to identify the outcome of patients with suspected
infection. For this purpose three parameters are usually
queried: altered mentation, systolic blood pressure of 100
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mmHg or less, and respiratory rate of 22/min or greater.
Since there is no information about an altered mentation in
the dataset, only the other two criteria were checked and
included in the features as boolean values. [1]
SOFA For the SOFA score, six organs are assessed with
specific parameters, giving them points between 0 (normal
function) and 4 (restricted function). Since one of the re-
quired parameters is also not specified here, only 5 of the 6
can be evaluated. The evaluated parameter for the different
organ systems are:
• Respiration: PaO2/FiO2

• Coagulation: Platelets
• Liver: Bilirubin
• Cardiovascular: Hypotension
• Renal: Creatinine

Each organ provides three features. The points of that or-
gan for every hour, the maximum points in each 24 hour
window and the difference of these maxima between these
24 hour windows. Additionally, the SOFA score in each
24 hour window and the difference of the SOFA score be-
tween adjacent 24 hour windows is provided. Overall this
adds another 17 features.
In the end all parameters with a “not a number” value are
set to zero. The model described in the next chapter is
trained and evaluated using these 129 features, which are
intended to emulate an evaluation by a physician.

3.3. Classification Model

For the automatic detection of sepsis in hourly retrieved
clinical data a model based on LSTMs was developed in
Python by using Keras with a Tensorflow backend. As al-
ready mentioned above, LSTMs were chosen due to their
ability to recognize temporal relationships. The whole en-
gineered network architecture is schematically shown in
Fig. 3 and described in the following.

At the beginning, the input data are masked using a
masking layer due to the varying dataset lengths of differ-
ent subjects. After a batch normalization two LSTM layers
follow with 400 hidden units each. To reduce the amount
of overfitting a dropout of 0.2 and a recurrent dropout of
0.5 is chosen for the LSTM layers. In the following layers
there are 4 fully connected or so-called “dense layers” with
varying number of units. The number of units becomes
smaller with increasing layer depth, it decreases from 250
to 150 to 100 and then to 50 units. The activation function
of the dense layers is the Rectified Linear Unit (ReLU)
function. Finally, the Softmax dense layer with 2 units
maps the probabilities for both classes ”sepsis” and ”no
sepsis” to the output.

Optimization is performed using the RMSprop opti-
mizer and a starting learning rate of 0.001 is chosen.

When analyzing the distribution of the classes in the
training data, it is noticeable that the sepsis class is ex-
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Figure 3. The left side shows the network architecture
where inputs to boxes marked with B are batch normalized;
On the right side a short explanation of the different layers
is given.

tremely underrepresented. Of the 40 336 subjects in to-
tal, 2932 have sepsis, which corresponds to about 7.3%.
Therefore the data sets without sepsis were undersampled
during training. The undersampling is done by randomly
removing a patient without sepsis with a chance of 30 %
from the training data. Binary cross-entropy (CE) is used
as loss function and was adapted to include different costs
for false positives and false negatives. In the adapted func-
tion the class ”no sepsis”, i.e. false positives, is addition-
ally weighted with the factor w = 0.7 to emphasize that a
false negative prediction is worse than a false positive pre-
diction. Equation 6 describes the new CE loss function,
where y is the ground truth label and ŷ is the prediction of
the network. [12]

CE(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) ∗ w (6)

Using the designed architecture, five models are trained
for 30 epochs on different training subsets each with a
batch size of 64. The resulting models are then combined
into an ensemble LSTM. In the case of prediction, the re-
sults of the five models are averaged and a combined prob-
ability is generated.

4. Results

Fig. 4 shows the cross-validation performances of the
five final models using different thresholds. Each model
is trained on three of five parts of the complete training
database. The remaining two folds were used for valida-
tion and testing. Therefore, the five test sets together com-
prise the whole database.

To choose an optimal threshold, the threshold at which
the maximum mean utility value is observed is selected.
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Figure 4. Utility score for different threshold values dur-
ing five-fold cross-validation of the five final models after
30 epochs of training.

This would correspond to a threshold of 0.06 according to
Fig. 4. However, a final threshold value of 0.07 is selected
by testing on a separate holdout set. For this value, an
utility score of 0.408 is observed. On the hidden subset A
that is provided by PhysioNet, the highest utility score of
0.369 is achieved. While on the full test set an utility score
of 0.29 is reached. On the leaderboard all submits appear
under the team name ”404: Sepsis not found”.

5. Conclusion

This paper presents an approach for automated sepsis
detection using clinical data. An ensemble LSTM archi-
tecture is introduced for this task. Overall, 129 features
are derived from the hourly collected vital parameters of
the patients and used for training and testing. When using
five-fold cross-validation on the training data, a mean util-
ity score of 0.408 is observed. This score is higher than
the score of 0.29 that is achieved on the full hidden test
set despite using dropout and batch normalization. This
gap might indicate that the test data has a different distri-
bution or labeling and that the model does not generalize
well enough. Further approaches might try to handle this
issue. Furthermore, the latest adaptions of the network ar-
chitecture have shown that deep networks tend to have a
better overall performances. Deeper networks might be
needed for this large number of features. Future investi-
gations should research this aspect to obtain the optimal
depth.
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