AI-Based Security Attack Pathway for Cardiac Medical Diagnosis Systems (CMDS)

Ying He1, Cunjin Luo2,3, Ruben Suxo Camacho4, Kuanquan Wang5, Henggui Zhang6

1University of Nottingham, Nottingham, UK
2University of Essex, Colchester, UK
3Southwest Medical University, Luzhou, China
4De Montfort University, Leicester, UK
5Harbin Institute of Technology, Harbin, China
6The University of Manchester, Manchester, UK

Abstract

The Cardiac Medical Diagnosis Systems (CMDS) are targeted by the cyber attackers. This paper is motivated by the recent cyber-attacks happened during the COVID 19 that have resulted in the compromise of medical data. This study was carried out to demonstrate how the CMDS can be breached into using an AI-based ethical attack pathway and propose security solutions to prevent such breaches. This study is based on an established simulation platform with an open source medical system, the OpenEMR. The system was fed with the ECGs data from the PhysioNet/Computing in Cardiology (CinC) Challenge 2017. This paper proposed the AI based hacking pathway following the NIST pen-testing methodology based on our previous identified vulnerability related to authentication. We then presented cyber security recommendations to prevent such AI-based attacks. Future work will consider a realistic CMDS, such as the arrhythmia detection and classification in ambulatory ECGs to find out how the algorithms core can be hacked and protected.

1. Introduction

The sustainability and resilience of medical systems, which falls into the category of global sustainable goal of health and wellbeing, has attracted attention worldwide. This issue becomes outstanding due to the fast-increasing health data aggregated from different medical systems and devices/sensors, the need of intelligent medical systems, which is extremely helpful in rural places where there is a lack of doctors. Other auxiliary medical services such as remote and personalised medicine also have impact on the improvements of health and wellbeing.

The high profile ransomware attack called WannaCry has affected thousands of organisations around the globe. The NHS was one of those victims. After the attack, the healthcare organisations started taking actions to protect their medical systems [1]. The COVID 19 has further challenged the sustainability and resilience of the medical systems, evidenced by the recent incidents happened to Brno University Hospital in Czech Republic, the US Department of Health and Human Services, the World Health Organization (WHO) and its Partners [2].

It is important to protect the sensitive data that should be taken care of and an analysis of the impact of diagnosis components [3-8] such as ECGs to understand the impact if the ECG diagnosis records are compromised. Ethical hacking which is also called pen-testing can help identify the weaknesses of the system and demonstrate security breaches. It is usually performed following an systematic methodology such as NIST or OWASP in a secure environment. There is existing work demonstrating cyber breaches towards medical system as well as its protection mechanisms [9-14], however, it is not against a realistic healthcare system.

Our previous work has built a simulation environment through implementing an realistic medical system, the OpenEMR, on a virtual platform. We demonstrated ethical hacking and identified a major vulnerability related to authentication [15]. This paper builds on and extends our previous work by proposing an AI-based attack pathway. This paper then presents the security defense solutions to counteract AI-based cyber attacks.

2. Related Work

2.1. Healthcare Cyber Security

Medical data can be classified into two groups, sensitive and non-sensitive. The data related to the patients especially the diagnosis data is categorised as sensitive data. For example, Electrocardiogram (ECG) data includes
both patient information and the ECG waveform data and is classified as sensitive data. Such data has been targeted by the attackers using various attack vectors. Previous work demonstrated ethical hacking to the medical system [14, 15], but AI based ethical hacking has not attracted the attention of the healthcare community.

2.2. AI Based Ethical Hacking

AI based ethical hacking can automate the traditional ethical hacking to help identify system weakness. Table 1 lists the difference between manual and AI based ethical hacking.

<table>
<thead>
<tr>
<th>Manual</th>
<th>AI based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less accurate</td>
<td>More accurate</td>
</tr>
<tr>
<td>Time consuming</td>
<td>The algorithms can be deployed on thousands of systems at a time</td>
</tr>
<tr>
<td>Investment on human</td>
<td>Less investment on human</td>
</tr>
<tr>
<td>Suitable for running the tests once or twice.</td>
<td>Suitable for repeatable tests.</td>
</tr>
</tbody>
</table>

Table 1: Manual and AI based Ethical Hacking

3. Methods

3.1. NIST Pen-Testing

The ethical hacking was carried out following the NIST pen-testing methodology, consisting of four stages, which are information gathering, discovery, attack and reporting [16]. Figure 1 shows the NIST pen-testing work flow.

3.2. The Simulated Medical System

In previous work, we have set up a simulation system on a virtual platform (using VMware software) through implementing an open source medical system, OpenEMR. We also add an ECG component by modifying the internal code to integrate and visualize the ECG records inside the system [15]. The context of the study is based upon this simulation platform.

4. AI based Ethical Hacking

In a previous study, we have launched brute force and dictionary attack [17, 18]. We have successfully performed the dictionary attack and identified a vulnerability related to authentication “A2 2017-Broken Authentication”, one of the listed OWASP Top 10 vulnerability.

This section proposes AI based ethical hacking methods. Figure 1 shows the weak points where AI can be applied to enter the system. As discussed in a previous study [15], the login through web interface is the main entry point. Figure 1 illustrates the AI-based ethical hacking pathway.

Trained password cracking algorithms. An algorithm can be trained initially to identify the most common patterns when a user utilises his password. Then, the algorithm will be applied to a set of words related to the user trying to find combinations based on the previous patterns. The output will be a set of possible passwords more accurate to the victim.

Face Recognition linked with Social Engineering. The attacker is able to check the mood of employees and take advantage of that to know how to approach the victim and to steal his passwords or other internal information. In Figure 1, the Face Recognition block points to the square number 1 and 4 because the attacker is able to steal the password of the website or servers and get access.

Trained directory discovery algorithms. This is similar to the concept of the password cracking. In this case, the algorithm learns what letter comes after another according to the language of study. And that concept is applied to discover hidden directories, instead of a dictionary attack or a brute force attack to the directories minimizing the time in performance.

Figure 1. NIST Pen-testing Methodology [16]
5. Security Solutions

The traditional ways of counteracting such attack is to use multi-factor authentication (MAF) [19]. MAF can verify the users’ identity by requiring multiple credentials. For example, a user can use a combination of elements to authenticate: a PIN sent through SMS, a code generated by the smartphone apps, or other physical devices. Another option is to limit the number of attempts and block the users after a number of failed login attempted.

Captcha can help identify the malicious AI based written programs and prevent the password decryption [20]. It is a common web based technique that can be used to identify whether the respondents are real human beings or a robot.

6. Conclusion and Future Work

Built on a previous study on the ethical hacking of the OpenEMR system, this study presented AI-based attacking pathway and cyber security solutions. It has implications for further research into the AI based attacks and the defence strategies in healthcare. Since the OpenEMR has been widely used in health organisations, the findings can help them prevent against AI based attacks.

Future work will look into integrating the simulated environment with a real world intelligent cardiac diagnosis systems with sophisticated computational models such as the arrhythmia detection and classification in ECG data [21-24] and see how the core of the models can be hacked and protected. Future work will also consider borrowing experience from other sectors to deter and prevent cyber attacks in healthcare [25-30].

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61803318).

References

online 16, no. 1 (2017): 69.

Address for correspondence:

Cunjin Luo

Email: cunjin.luo@essex.ac.uk
School of Computer Science and Electronic Engineering
University of Essex
Colchester CO4 3SQ
UK