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Abstract 

Respiratory rate (RR) is one of the most important 

physiological parameters. In recent years, the RR 

estimation from PPGs widely used in smart devices has 

been promoted. The effect of respiration on PPGs 

manifests in three ways:  BW (intensity variation), AM 

(amplitude variation), FM (frequency variation). In 

addition to sophisticated RR estimation methods, reliable 

results can be achieved with simple and efficient methods 

implementable in wearables. The BW signal (respiratory 

signal estimation, RS) can be obtained by linear filtering 

of the PPG. The RR estimation is based on BW extremes 

(sBW), BW autocorrelation extremes (aBW) and their 

spectra (SBW, ABW). Estimation of the AM RS requires 

PPG extremes detection and interpolation. The RR 

estimation is based on extremes of the AM signal (sAM), 

its autocorrelation (aAM) and their spectra (SAM, AAM). 

The fusion of RR estimates leads to more robust results. 

To test the algorithms, the annotated BIDMC and 

CapnoBase Datasets were used. RR estimates were made 

for 60 s sections. The simplest and the most accurate 

method for both datasets is the RR estimation based on 

sBW (RsBW). The median absolute error was 0.40 

(0.16-1.09 interquartile range 25-75th) bpm for the 60s 

window, mean absolute error was 1.42 bpm. 

 

 

1. Introduction 

Respiratory rate (RR) is one of the key physiological 

features. Resting RR ranges from 12 to 24 breaths per 

minute (bpm), i.e. 0.2-0.4 Hz. The whole range of RR is 

much greater. In spite of the modern technologies, the RR 

is often monitored manually [1]. Alternatively, 

uncomfortable methods such as impedance 

pneumography or inductance plethysmography can be 

used. In recent years, the trend is to estimate RR from 

electrocardiograms (ECG) and/or photoplethysmograms 

(PPG). PPG-based methods are of high potential thanks to 

the mass use of wearables with integrated PPG sensors. 

The effect of respiration on PPGs manifests in three 

ways:  BW (respiratory-induced intensity variation), AM 

(respiratory-induced amplitude variation) and FM 

(respiratory-induced frequency variation). 

In general, extraction of respiratory signal (RS) is 

based on two principles: filtration and features extraction. 

RS extraction using filtration can be performed by e.g. 

linear filters [2], decomposition using Wavelet Transform 

(WT) [3], decomposition using Empirical Mode 

Decomposition (EMD) [3], [4] or homomorphic filtration 

[5]. Some methods are based on extraction of features 

such as width, height and amplitude of PPG pulses [6], 

[7], [8]. These and other methods are reviewed in [1]. 

In this work, the algorithms for RR estimation based 

on drift, drift autocorrelation and amplitude variation 

derived from PPG signals are described. Proposed 

algorithms were tested on BIDMC [8] and CapnoBase [9] 

datasets in order to develop universal algorithm for both 

datasets. According to Charlton et al. [1], only these two 

publicly available datasets contain breath annotations. We 

focused on simple and efficient methods, which often 

lead to better results than sophisticated algorithms. For 

example, in the work of Lazazzera et al. [10] simple 

algorithms (BW, AM, FM) are more accurate than 

methods based on EMD or WT. Moreover, simple 

methods can be effectively integrated into wearables. 

There are only a few works in which the described 

algorithms are tested on both datasets used in this work. 

Pimentel et al. [8] use autoregressive models. Sharma et 

al. [11] combine Ensemble EMD (EEMD) and Kalman 

filtration. Bian et al. [12] introduced two methods. The 

first one is referred to as Smart Quality Fusion and it is a 

combination of smart fusion [7] and quality fusion [13]. 

The second method is based on deep learning. 

 

2. Methods 

2.1. Data 

Algorithms for PPG-based RR estimation were tested 

on two datasets – the BIDMC and the CapnoBase. RRs 
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were estimated in one-minute segments of PPG signals. 

In both datasets, reference RR (annotations) provided by 

experts using impedance RSs are included. CapnoBase 

dataset includes 42 8-minute signals (sampling frequency 

fs=300 Hz). Seven 1-minute segments were excluded 

from analysis due to missing annotations. BIDMC dataset 

includes 53 8-minute signals (sampling frequency fs=125 

Hz) and reference RR provided by two experts. From 

BIDMC dataset, 25 1-minute segments were excluded 

because the expert annotations of RR differ by more than 

2 breaths per minute. As a reference RR, we used the 

mean of both experts’ annotations. 

 

2.2. Extraction of respiratory signals 

Pilot experiments on both datasets showed that the 

best RR estimations were based on RS derived from drift 

(BW methods). FM based methods showed the lowest 

accuracy. For RS extraction, we used three methods 

(Figure 1): 

a) PPG signal drift (sBW) – sBW signal is the simplest 

method of RS extraction. It is based on filtration using 

reasonable low-pass filter. Generally recommended 

cut-off frequency is 0.5 Hz. Nevertheless, final RR 

estimation is very sensitive to setting of the cut-off 

frequency and steepness of the filter. As a 

compromise for both datasets, low-pass FIR filter with 

5fs impulse response length was used. Filter was 

applied in forward and reverse directions. Resulting 

cut-off frequency fc is 0.46 Hz (-3 dB). 

b) PPG signal drift autocorrelation (aBW) – in some 

cases aBW is better than sBW for RR estimation. 

c) PPG systolic peak amplitude variation (sAM) – this 

method is based on systolic peaks detection and spline 

interpolation. Drift was not filtered in this method, 

thus the extracted RS is a fusion (addition) of drift and 

interpolated systolic peaks. 
 

 
Figure 1. Designed RS extraction methods. 

 

All RSs were downsampled at 25 Hz. Downsampling 

reduces the computational demand of the algorithm which 

is beneficial for the future usage in wearables. 

2.3. Estimation of respiratory rate 

In the time domain, RR estimation is based on the 

peak-to-peak distance of RS (Figure 2, upper part). The 

quality of the RS may vary depending on the quality of 

initial PPG signal. We found it depends on whether the 

RR will be estimated from positive or negative peaks of 

RS. For RR estimation we used extremes with higher 

absolute median value. Then we considered only 

extremes of selected polarity which were higher than the 

threshold. The setting of the threshold was based on the 

mentioned median value (50 % of median peaks). 

For RR estimation, we used median of the detected 

peaks differences (instead of mean) to prevent influence 

of possible false negative and false positive detections of 

RS extremes. RR derived from RS sBW, aBW and sAM 

are denoted as RsBW, RaBW and RsAM, respectively. 

Fusions of RR estimations: median(RsBW, RaBW, 

RsAM), median(RsBW, RsBW, RaBW, RsAM) and 

mean of the two closest values from (RsBW, RaBW, 

RsAM) proved reasonable.  

In frequency domain, we calculated spectra of 

extracted RS sBW, aBW and sAM (Figure 2, lower part). 

Spectra were calculated with frequency step of 0.3 bpm. 

As a RR we considered maximum of the spectra from 

8.5 bpm. The reason is elimination of false extremes in 

lower frequencies. Estimated RRs are further denoted as 

RSBW, RABW and RSAM.  
 

 
Figure 2. Designed RR estimation methods. 

 

2.4. Evaluation of methods performance 

For evaluation of RR estimation algorithms 

performance, we used Mean Absolute Error (MAE): 
 

𝑀𝐴𝐸 =
1

𝑀𝑁−𝑋
∑ ∑ |𝑅(𝑚,  𝑛) − 𝑅𝑟𝑒𝑓(𝑚,  𝑛)|

𝑁
𝑛=1  𝑀

𝑚=1 , 
 

where R is estimated RR, RRef is reference RR, M is 

number of signals in dataset (M = 53 or 42), N is number 

of one-minute segments (N = 8). For X excluded 

segments, it was set:|𝑅(𝑚,  𝑛) − 𝑅𝑟𝑒𝑓(𝑚,  𝑛)|= 0. 

In addition to MAE we calculated Median Absolute Error 

(MedAE) and inter-quartile range (25-75th percentiles) 

from all one-minute segments. 
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3. Results 

In Table 1, MAE values for each method of RR 

estimation and their fusions tested on CapnoBase (3rd 

column) and BIDMC (4th column) datasets are shown. 

Both datasets contain a total of 728 one-minute segments 

with reference RR values (399 segments in BIDMC and 

329 segments in CapnoBase). Results for both datasets 

together are shown in the 2nd column of Table 1.  The 

overall result was calculated as a weighted mean of 

results from each dataset. Weights were set according to 

the number of segments in each dataset: 0.55 for BIDMC 

dataset and 0.45 for CapnoBase. 

 

Table 1. Results of RR estimation algorithms tested on 

CapnoBase and BIDMC. Window of 60 s length is used. 
 

Methods 

MAE, MedAE  

(25-75th percentiles) [bpm] 

All CapnoBase BIDMC 

(1) RsBW 
1.42, 0.40 

(0.16-1.09) 

1.51, 0.13 

(0.04-0.59) 

1.34, 0.62 

(0.25-1.50) 

(2) RaBW 
2.16, 0.27 

(0.09-2.15) 

2.90, 0.16 

(0.05-3.05) 

1.56, 0.36 

(0.12-1.42) 

(3) RsAM 
2.05, 0.64 

(0.23-2.43) 

2.47, 0.30 

(0.08-2.94) 

1.70, 0.91 

(0.35-2.01) 

(4) RSBW 
2.30, 0.35 

(0.17-1.03) 

2.98, 0.38 

(0.20-0.80) 

1.75, 0.32 

(0.14-1.22) 

(5) RABW 
2.38, 0.33 

(0.15-1.17) 

3.13, 0.38 

(0.20-1.00) 

1.77, 0.28 

(0.11-1.30) 

(6) RSAM 
2.47, 0.41 

(0.22-1.88) 

2.76, 0.37 

(0.20-1.04) 

2.24, 0.44 

(0.24-2.56) 

median (1,2,3) 
1.51, 0.35 

(0.12-1.08) 

1.88, 0.13 

(0.04-1.78) 

1.20, 0.53 

(0.19-1.32) 

av2nearest (1,2,3) 
1.50, 0.34 

(0.13-0.98) 

1.84, 0.13 

(0,05-0.69) 

1.22, 0,51 

(0,20-1.22) 

median (1,1,2,3) 
1.44, 0.39 

(0.15-1.13) 

1.68, 0.13 

(0.04-0.78) 

1.24, 0.60 

(0.24-1.41) 

median (1,2,4) 
1.82, 0.25 

(0.07-1.19) 

2.44, 0.16 

(0.04-1.31) 

1.31, 0.32 

(0.10-1.10) 

 

From Table 1 follows, that one of the best methods 

applied on both datasets is the RsBW (based on the PPG 

signal drift). Similar results have the fusion methods, but 

their computational demand is much higher. 

Upper pictures in Figure 3 show MAEs of RR 

estimations using RsBW method tested on both datasets 

(CapnoBase on the left, BIDMC on the right). Lower 

pictures show boxplots of errors from 8 one-minute 

segments of each signal from both datasets (CapnoBase 

on the left, BIDMC on the right). The highest MAE of 

21.7 bpm occurred in signal no. 16 from CapnoBase. It is 

probably caused by the high reference value (around 40 

bpm, i.e. 0.67 Hz) which cannot be detected by our 

algorithm because it uses low-pass filter with cut-off 

frequency of 0.46 Hz. Omitting this signal would 

significantly decrease the MAE of RsBW, RaBW and 

fusions (tested on CapnoBase). 

 

4. Discussion 

The aim of the work was to develop simple, efficient 

and accurate RR estimation algorithm which has potential 

to be implemented in wearables. Such algorithm should 

be as much universal as possible to work on both datasets. 

In Table 2, the results of other authors are shown. We 

selected only those authors, who tested their algorithms 

on both datasets (CapnoBase and BIDMC). In 

comparison with Pimentel et al. [8], our results are always 

better (for all algorithms and both datasets). In 

comparison with Sharma et al. [11], our results are better 

for all algorithms tested on BIDMC and for RsBW and 

the first three fusions tested on CapnoBase. Our results 

surpass the results of both algorithms of Bian et al. [12]. 

Very encouraging is the fact that our simple algorithms 

are more accurate than deep-learning based algorithm 

[12] which is much more computationally demanding. 

 

 

 

 

Figure 3. MAEs (upper) and boxplots (lower) of RR estimations using RsBW tested on each signal of both datasets – 

CapnoBase (left, 42 signals) and BIDMC (right, 53 signals). (Note: MAE for signal no. 16 from CapnoBase is 21.7 bpm). 

  

Avg 1.51 Avg 1.34
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Table 2: Results of other authors’ RR estimation 

algorithms tested on CapnoBase and BIDMC datasets. In 

methods [8] and [11], window of 64s length is used. 
 

Methods CapnoBase BIDMC 

 
MedAE (25-75th percentiles) 

[bpm] 

Autoregressive 

models [8] 
1.9 (0.3-3.4) 2.7 (1.5-5.3) 

EEMD+Kalman 

filter [11] 
0.1 (0-3.4) 1.1 (0.2-2.9) 

 
MAE ± std, (25-75th percentiles) 

[bpm] 

Smart quality 

fusion [12] 
2.6 ± 0.4, (2.3-2.8) 

Deep learning 

[12] 
3.8 ± 0.5, (3.3-4.2) 

 

The MAE also varies depending on the subject's RR. 

In the normal range of RR, the MAE is around 1 bpm, 

while outside this range the MAE rises as can be seen in 

Figure 4. 
 

 
Figure 4. Red: Dependence of MAE on RR for RsBW. 

Black: RR histogram of subjects (includes both datasets). 

Dashed lines indicate RR range considered normal. 

 

5. Conclusion 

We proposed six algorithms and four fusions for RR 

estimation from PPG signal. All the algorithms were 

tested on two datasets – CapnoBase and BIDMC 

including altogether 728 one-minute segments of PPG 

signal. The performance of majority of proposed 

algorithms is better than the results of other authors. The 

simplest and the most accurate method is the RR 

estimation based on sBW (RsBW). The MedAE was 0.40 

(0.16-1.09 interquartile range 25-75th) bpm for the 60 s 

window, MAE was 1.42 bpm. Proposed algorithms are 

simple, fast, efficient and accurate. They can work real 

time (with buffer) and they use only PPG signal which is 

nowadays sensed by majority of wearables. Due to these 

advantages, proposed algorithms are suitable for 

implementation in wearables. 
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