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Abstract

Introduction: The electrocardiogram (ECG) is a stan-
dard tool used in medical practice for identifying cardiac
pathologies. Because the necessary expertise to interpret
this tracing is not readily available in all medical institu-
tions or at all in some large areas of developing countries,
there is a need to create a data-driven approach that can
automatically capture the information contained in this
physiological time series. Yet, contrary to heart rate vari-
ability measures, a field which has seen the development
of standards, advanced toolboxes and software, very lit-
tle open tools exist for ECG morphological analysis. The
primary objective of this work was to identify and imple-
ment clinically important digital ECG biomarkers for the
purpose of creating a reference toolbox and software for
ECG morphological analysis. Methods: The epltd algo-
rithm was used for R-peak detection. We used a zero-
phase filter with passband 0.67Hz - 100Hz to remove base-
line wander and high frequency noise. We used a Notch
filter at 50/60Hz to remove the power-line interference.
ECG fiducial points were detected using the well-known
open source wavedet algorithm. A total of 22 biomark-
ers were engineered including 14 extracted from intervals
and segments duration and 8 from waves characteristics.
Results and discussion: the result of this work consists of
a Python toolbox termed “pebm” and its user interface
termed “PhysioZoo ECG” for data visualization and anal-
ysis. The software is available at physiozoo.com under a
GNU GPL licence. The pebm toolbox may be used to pro-
vide new physiological information on cardiac conduction
as well as used as a source of readily handcrafted features
for training machine learning models.

1. Introduction

The electrocardiogram (ECG) is a standard tool used in
medical practice for identifying cardiac pathologies. Be-

cause the necessary expertise to interpret this tracing is
not readily available in all medical institutions or at all in
some large areas of developing countries, there is a need to
create a data-driven approach that can automatically cap-
ture the information contained in this physiological time
series. Yet, contrary to heart rate variability measures, a
field which has seen the development of standards and ad-
vanced toolboxes and software [1,2], very little open tools
exist for ECG morphological analysis. The primary objec-
tive of this work was to identify and implement clinically
important digital ECG biomarkers (“pebm”) for the pur-
pose of creating a reference toolbox for ECG morphologi-
cal analysis.

2. Methods

Overview: For an individual ECG lead the process con-
sists of (Figure 1): (1) Preprocessing; (2) ECG fiducial
points detection; (3) Engineering of ECG biomarkers and
(4) Summary statistics

Preprocessing: Before computing the ECG morpholog-
ical biomarkers, prefiltering of the raw ECG time series
is performed to remove the baseline wander as well as re-
move high frequency noise. Specifically, we include a zero
phase second-order infinite impulse response bandpass fil-
ter with the passband of 0.67Hz - 100Hz to remove base-
line wander and high frequency noise. We include an op-
tional Notch filter that can be set to 50 or 60Hz to remove
the power-line interference. Because wavedet [3] was orig-
inally designed to implicitly perform frequency filtering
while performing the discrete wavelet transform then this
step is to be considered as optional. In other words pre-
filtering may be enabled or disabled in the toolbox and
software.

ECG fiducial points detection: For a given channel, the
epltd algorithm was used for R-peak detection. The ECG
fiducial points are detected using the well-known wavedet
algorithm [3]. Duration biomarkers include segments and
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Figure 1. Fiducials points detected by wavedet [3].

intervals. An ECG segment is the region between two
waves. An interval is a duration of time that includes one
segment and one or more waves. Briefly, wavedet uses the
dyadic wavelet transform of the ECG signal to identify the
location of the peaks of the P, Q, R, S R’ and T waves as
well as the P, QRS and T waves boundaries. The fiducials
and their notations used in PhysioZoo ECG are shown on
Figure 1.

Engineering of ECG biomarkers Using the fiducial
points ECG biomarkers are engineered for individual ECG
cycles. When a biomarker cannot be engineered because
some fiducial points could not be detected by wavedet then
the feature was marked as a NaN. For an ECG channel a
total of 14 features are extracted from intervals duration
(Table 1) and 8 from waves characteristics (Table 1) to de-
scribe the ECG morphology. Some of these features were
described in the work of Biton et. al. [4]. In addition we
included a measure of signal quality, bsqi [5].

Summary statistics: For a specified time window the
five summary statistics (median, min, max, Q1 and Q3)
are computed for all ECG biomarkers. This is performed
by considering all cycles available in this window and for
which a cycle specific biomarker was not marked as NaN.

Notations: Since we computed MOR features for each
channel we use the index (i) to specify on what channel it
was computed on in the instance of an input with multiple
channels. For example, PRV1 will refer to the PR interval
computed on the lead V1.

3. Results

The results of this work consists of the pebm toolbox
and PhysioZoo ECG user interface. The software is avail-

able at physiozoo.com under a GNU GPL licence. Figure
2 shows an example of a 2-lead ECG loaded in PhysioZoo
ECG and for which the fiducial points characterizing the
waves peaks are shown. Summary statistics are shown in
the lower panel under “Duration” and “Amplitude”. The
software supports three input formats (mat, txt, wfdb).

Figure 3 shows violin plots for 100, 30sec windows
computed from each recording of the MIT NSR database.
The density is mainly contained within the normality
ranges (reported in Table 1) which provides a first layer
of quality control on the toolbox implementation.

4. Discussion and conclusion

In the case of multi-channel ECG and with the current
implementation we decided to run epltd on each individual
channel to obtain channel dependant R-peak locations. It
is also possible to consider detecting the R-peak on a sin-
gle channel to save computational time and input that to
wavedet on the individual channel for extracting the other
channel dependant fiducials. The tradeoff between delnia-
tion accuracy and computing time is to be evaluated.

This work presents a first step towards creating a stan-
dard library and software for ECG morphological analysis.
The pebm toolbox may be used to provide new physiolog-
ical information on cardiac conduction as well as used as a
source of readily handcrafted features for training machine
learning models. The engineered biomarkers need to be
validated against human annotations. The list of biomark-
ers presented may also be augmented as many other ECG
biomarkers, albeit less standard in clinical practice have
been used in research for the purpose of analysing the ECG
signal. Additional contributions from the research commu-
nity are welcomed.
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Figure 2. Screenshot of the PhysioZoo ECG interface. (A) ECG signal shown for the selected window; (B) setting panel
for the fiducial points detection; (C) beat-to-beat time series and (D) summary statistics for the duration biomarkers.

Biomarkers Definition Normality range
Interval and segments
1 Pwaveint Time interval between P-peak and P-offset <120ms
2 PRint Time interval between P-onset and Q-onset 120-200ms
3 PR2int Time interval as defined by Mao et al. [6]
4 PRseg Time interval between P-offset and Q-onset
5 QRSint Time interval between Q-onset and S-offset <110ms
6 QTint Time interval between Q-onset and T-offset
7 QTcB Corrected QT interval (QTc) by Bazett [7] <450ms (w), <430ms (m)
8 QTcFrid QTc by Fridericia [8]
9 QTcF QTc by Framingham [9]

10 QTcH QTc by Hodges [10]
11 Twaveint Time interval between T-onset and T-offset
12 TPseg Time interval between T-offset and P-onset
13 RRint Time interval between consecutive R peaks
14 Rdep Time interval between Q-onset and R-peak
Waves characteristics
15 Pwave Amplitude difference between P-peak and P-offset
16 Twave Amplitude difference between T-peak on and T-offset
17 Rwave R peak amplitude
18 PwaveArea P wave interval area defined as integral between P-onset and P-offset
19 TwaveArea P wave interval area defined as integral between T-onset and T-offset
20 QRSArea QRS interval area defined as integral between Q-onset and S-offset
21 STseg Amplitude difference between S-offset and T-onset
22 Jpoint Amplitude 40ms after S-offset as defined by Hollander et al. [11]

Table 1. Interval and segments duration and waves characteristics biomarkers. Normality range are from [12].
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Figure 3. Violin plot for the distribution of the intervals
Pwaveint, PRint and QRSint computed on the Phys-
ioNet NSR database.
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