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Abstract

Cardiovascular disease is one of the leading causes of
death, with hypertension (HT) being its main risk factor.
Its complications can be avoided with early treatment, but
since these patients do not present any symptoms, HT is
often detected at very advanced stages. This work presents
a model for estimating blood pressure (BP) from electro-
cardiographic (ECG) and photoplethysmographic (PPG)
signals, which can be easily obtained by means of wear-
able continuous monitoring devices. ECG, PPG and BP
recordings from 86 patients were analyzed.A total of 34
standard and new features based on previous works were
defined, such as pulse arrival times (PAT), and morpho-
logical characteristics of PPG signal. 37 classification
models, ranging from Logistic Regression, Support Vec-
tor Machines (SVM), Nearest Neighbors, Naive Bayes or
Coarse Trees were trained to compare discrimination re-
sults. The classifier that provided the highest performance
when comparing normotensive patients with prehyperten-
sive and hypertensive patients were Coarse Tree, providing
an F1 score of 85.44% (Se of 86.27% and Sp of 77.14%).
The use of PPG and ECG features has successfully dis-
criminated between healthy and hypertensive individuals
and, thus, could be used to detect HT by embedding these
techniques in wearable devices.

1. Introduction

High blood pressure (HBP) is a major risk factor for
many cardiovascular diseases worldwide, including heart
disease, vascular diseases of the brain, and blood vessels
diseases, specially in high-income countries [1]. Hyper-
tension (HT) is a condition in which the blood vessels have
persistently raised pressure. Regular blood pressure (BP)
control is crucial for patients already suffering from HT, as
many of their organs are particularly vulnerable to elevated

BP. Healthy lifestyles, early detection and regular assess-
ment of blood pressure levels, together with the obtention
of a proper diagnosis are all beneficial for the prevention
and control of HT and its consequences [2].

For noninvasive BP estimation, conventional cuff-based
BP measurement devices offer good accuracy. However,
they are not designed to be wearable, are not compatible
with continuous measurement throughout the day, are un-
comfortable, and their measurement procedure is some-
what tedious and requires patient attention [3]. To this
must be added that most patients with HT have no symp-
toms in the elevated blood pressure stage and even in
hypertension, therefore, many people miss, through ig-
norance and lack of medical control, the opportunity for
early treatment and experience cardiovascular complica-
tions that could be avoided [1].

Because of the above factors, work in this field is fo-
cused on the development of robust and discrete BP esti-
mation systems that can provide the user with regular up-
dates of the BP level in near real time [4]. The main ad-
vance that has led to the development of these systems is
the increasing presence of wearable devices, such as wrist-
bands or smart watches [5], capable of monitoring phys-
iological signals that change as a function of BP level,
such as the electrocardiogram (ECG) and photoplethysmo-
gram (PPG). Morphological changes in physiological sig-
nals mainly reflect changes in the state of functioning of
the heart and vascular system, so morphological informa-
tion from PPG could be used to assess hypertension [6].

The present work uses the analysis and processing of
ECG and PPG signals to develop an improved system
for discriminating between normotensive, prehypertensive
and hypertensive patients. The final goal is to identify, by
means of wearable devices, hypertensive patients without
apparent symptoms or to monitor at risk patients in order
to prevent future cardiovascular diseases, of which HT is
the main risk factor.
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Figure 1. Fragment of 2000 samples illustrating the morphology of the signals used, together with the representation of
the characteristic points of the defined PPG, VPG and APG signals.

2. Material and Methods

In this study, the signals used were obtained from
MIMIC database, a free database that contains information
from Intensive Care Unit (ICU) patients admitted to Beth
Israel Deaconess Medical Center in Boston, USA [7].

A total of 86 patients records distributed in 35 nor-
motensive, 26 prehypertensive and 25 hypertensive con-
taining ECG, PPG and BP (ABP) signals recorded simul-
taneously and in acceptable conditions were analysed. The
records with noise, abnormal morphology or missing data
were excluded. The signals were all recorded simultane-
ously with a duration of 60 seconds, a common sampling
frequency of 125 Hz and a resolution of 8-10 bits [8].

2.1. Data Preprocessing and feature points

Firstly, in order to remove noise and improve signal
quality, a fourth order Chebyshev II bandpass filter was
applied to the raw PPG signal between 0.5 and 10 Hz [9].
Baseline fluctuation was then removed by setting the pulse
minimum to zero from the difference between the signal
and its lower envelope to improve the precision obtaining
the amplitudes of the PPG feature points.

From the PPG signal, its first and second derivatives,
called photoplethysmographic velocity signal (VPG) and
photoplethysmographic acceleration signal (APG), respec-
tively, were obtained [10]. At last, their characteristic
points have been acquired, searching for local maximum
and minimum calculated based on thresholds in each of the
pulses of the signals, as illustrated in Figure 1. The systolic
peaks of the three signals (S,W,a), the diastolic notches of
the PPG signal (O), and two local maxima and minimum
of the APG signal (b,c,d,e) were extracted [10].

ABP signals were clear and did not require any process-
ing to be applied. Only the absolute maximum systolic

blood pressure (SBP) had to be detected, used as the BP
classification label. Finally, standard preprocessing was
applied to each ECG [11]. Thus, it was high-pass filtered
with cutoff frequency of 0.5 Hz to remove the baseline, and
then low-pass filtered with cutoff frequency of 50 Hz to re-
duce high-frequency muscle noise and remove power grid
interference, in this case, 60 Hz [11]. An R-peak detector
was then applied to obtain the position of each beat [12].

2.2. Obtaining discriminatory parameters

Two data matrices were used as inputs for the classifi-
cation models. The first matrix was formed with the 13
parameters that reported a higher correlation with BP lev-
els in previous works [13], such as the three pulse arrival
times (PAT) that were calculated as the delay between the
R peak of the ECG and a characteristic point of the PPG
signal, PATpeak, PATderivate, PATfoot, time intervals be-
tween peak S from PPG signal and points c and d from
APG signal (see Fig. 1), slopes between feature points,
ratios between amplitudes and areas under the pulse.

The other matrix was formed with 24 parameters pro-
posed used in the literature based on the three PATs and
PPG signal characteristics, such as areas before and af-
ter the systolic peak (A1 and A2), the ratio between them,
the total area, intervals between systolic peaks (TPP), total
pulse interval (TPI), rise time and PTT, interval between
the SBP peak and the systolic peak, amplitude of the sys-
tolic peaks in the PPG and VPG signals and ratios between
the characteristic points of the APG signal with the aim of

Normotensive
vs

Prehypertensive

Normotensive
vs

Hipertenso

Norm. + Prehyp.
vs

Hypertensive

Normotensive
vs

Preyp. + Hip.

Table 1. Types of patients compared in each matrix
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AdaBoost Logistic Regresion KNN Bagged

Se Sp F1 Se Sp F1 Se Sp F1 Se Sp F1

Normo vs Pre 61,54% 74,29% 62,75% 57,69% 68,57% 57,69% 42,31% 80,00% 50,00% 46,15% 74,29% 51,06%

Normo vs Hiper 80,00% 74,29% 74,07% 52,00% 77,14% 56,52% 40,00% 94,29% 54,05% 76,00% 82,86% 76,00%

Normo+Pre vs Hiper 88,00% 81,97% 75,86% 36,00% 90,16% 45,00% 36,00% 100,00% 52,94% 52,00% 90,16% 59,09%

Normo vs Pre+Hiper 76,47% 71,43% 78,00% 60,78% 34,29% 59,05% 62,75% 68,57% 68,09% 72,55% 57,14% 71,84%

Table 2. Performance of the four classification models analysed with the characteristic parameters that have been reported
to correlate most strongly with BP levels in previous work.

Naive Bayes SVM cubic SVM quadratic Coarse Tree

Se Sp F1 Se Sp F1 Se Sp F1 Se Sp F1

Normo vs Pre 57,69% 91,43% 68,18% 57,69% 74,29% 60,00% 61,54% 91,43% 71,11% 50,00% 80,00% 56,52%

Normo vs Hiper 64,00% 85,71% 69,57% 68,00% 82,86% 70,83% 60,00% 88,57% 68,18% 40,00% 80,00% 47,62%

Normo+Pre vs Hiper 64,00% 91,80% 69,57% 64,00% 91,80% 69,57% 68,00% 93,44% 73,91% 48,00% 77,05% 47,06%

Normo vs Pre+Hiper 82,35% 82,86% 84,85% 54,90% 65,71% 61,54% 76,47% 80,00% 80,41% 86,27% 77,14% 85,44%

Table 3. Performance of the four new proposed classification models using the new characteristic parameters.

improving the results of previous work [10].
Since three different groups of patients were available,

the four most logical paired comparisons were made and
shown in the Table 1. Furthermore, a treatment of out-
liers has been carried out, where the detected values are
replaced by the median of the patients sharing their same
classification label following the absolute deviation from
the median (MAD) method [14].

2.3. Classification models

Initially, Logistic Regression, AdaBoost Tree, K Near-
est Neighbors (KNN) and Bagged Tree models were ap-
plied, with representative classification theories such as
regression, decision trees, cluster and bagged decision
tree [15], since they have reported good results in previ-
ous works [13].

Furthermore, four additional classification models have
also been applied searching for an improve in the accuracy
percentaje. For this purpose, up to 37 different classifica-
tion strategies have been tested, such as various types of
decision trees, discriminant analysis, logistic regression,
Naive Bayes, support vector machines (SVM), KNN and
ensemble classifiers [15]. Finally, the cubic and quadratic
SVM models, Naive Bayes using kernels and Coarse Tree
were selected for obtaining the highest percentages of clas-
sificatory accuracy.

2.4. Statistical analysis

The cross-validation leaving one out strategy was used
to estimate the models accuracy. Finally, statistical tests
have been used to perform an evaluation of the classifica-
tion. In this work, sensitivity (Se) or ability to detect the

disease in diseased subjects, specificity (Sp) or ability to
give as negative healthy patients and F1 score, which is the
harmonic mean of accuracy of detecting false positives and
sensitivity are used.

3. Results

The statistical study began using the predictive parame-
ters that have reported a higher correlation with BP levels
in previous work [13] and following the four groupings of
patients in Table 1 as represented in Table 2. It can be seen
that the best classifications are obtained by comparing nor-
motensive patients with prehypertensive and hypertensive
patients in the AdaBoost model with an F1 score of 78%.
The other models do not discriminate correctly and tend
to classify as healthy both patients who are really healthy
and those who are sick as seen in the imbalance between
Se and Sp generalized in these models.

Similarly, Table 3 presents the improved results of this
study, where the use of the new predictive parameters, to-
gether with the alternative classification models, signifi-
cantly improve the classification results. Thus, the value
of F1 score for the Naive Bayes and Coarse Tree classifi-
cation models exceeds 84%.

4. Discussion

The study of the variation in the morphology of the PPG
signal has a large amount of physiological information that
can be used to study cardiovascular activity. There are
works in which only the PAT is used [6, 16], but whose
effectiveness has been discussed in later works by combin-
ing it with additional PPG characteristics, which allowed
reporting a higher correlation with BP levels [13]. Thus,
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PAT indicates the transmission of the arterial wave in the
blood vessel, whereas PPG features indicate the change of
state of the vascular tissue and blood volume.

So far, recent work that has used the PPG signal both to
classify patients as healthy or hypertensive and to obtain
the level of BP has not agreed on the predictive parameters
or the classification models to be used, since this choice
depends largely on the signals used in the studies and there
is disparity in terms of patient selection, mode of acquisi-
tion, and signal quality.

It is noteworthy that, in all the models analyzed in the
present work, the best results are obtained when normoten-
sive patients are compared with prehypertensive and hy-
pertensive patients. This fact is very relevant, since it
means that the values of the discriminatory parameters in
prehypertensive patients are more similar to hypertensive
patients. Furthermore, it should be taken into account that
prehypertensive patients do not show obvious symptoms
until they are in very advanced stages of the disease, caus-
ing serious cardiovascular problems, so that alerting this
group as sick patients is of great interest.

Finally, this study has certain limitations. The number
of patients is not too large, there is no information on fac-
tors that may imply a higher risk of hypertension such as
physical condition, sex or age, and it would be desirable to
use signals with a sampling frequency higher than 125Hz,
which could improve the identification of fiducial points.

5. Conclusion

This work has shown that the combined analysis of PPG
and ECG signals, together with the definition of new mor-
phological characteristics, such as pulse width and inter-
val between systolic peaks, as well as the use of alterna-
tive classification models, allows better discrimination be-
tween healthy individuals and prehypertensive or hyper-
tensive patients. The implementation of these methodolo-
gies in wearable devices may enable the prevention of hy-
pertension and its associated cardiovascular pathologies.
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