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Abstract

Within PhysioNet/Computing in Cardiology Challenge
2021, we developed a two-phase method of automatic ECG
recording classification. In the first phase, we pre-trained
a model on a large training set with our proposed map-
ping of original labels to the SNOMED codes, using three-
valued labels. To solve the multilabel binary classification
task, we used a deep convolutional neural network, which
is a 1D variant of the popular ResNet50 network. In the
second phase, we performed fine-tuning for the Challenge
metric and conditions. Our team CeZIS took 6th, 3rd, 5th,
4th, and 5th places for the 12-lead, 6-lead, 4-lead, 3-lead,
and 2-lead versions of the hidden test set, respectively, with
a score of 0.52 for each lead configuration.

1. Introduction

The PhysioNet/CinC Challenge 2021 [1, 2] addressed
the issue of automated approaches for classifying cardiac
abnormalities from ECG recordings (abbreviation ECGs
will be applied in the following). Due to the increasing
availability of smaller, lower-cost, and easier-to-use de-
vices, the Challenge required the development of an al-
gorithm that can classify 12-lead, 6-lead, 4-lead, 3-lead,
and 2-lead ECGs in order to compare its performance on
different numbers of leads.

2. Methods

In this paper, we present a method based on a deep 1D
convolutional neural network that processes a raw ECG
signal and predicts the probabilities of individual labels oc-
currence on the ECG recording. We solved this multilabel
binary classification task in two phases:
• Phase 1 – creating a base model using data from differ-

ent sources with unified label semantics.

• Phase 2 – fine tuning the model for PhysioNet/CinC
Challenge 2021 conditions.

2.1. Training Data

A quality deep learning model requires a sufficient
amount of training data. The public training set supplied
for the Challenge is relatively large and originates from
several source databases [1]. The inclusion of data from
multiple sources is very important as they differ in the
used tools, the scanning conditions, the methods of post-
processing and digitization, and may also reflect geograph-
ical differences.

Table 1. Structure of used training data.

# Dataset N Samples
1 CPSC2018 6 877
2 G12EC 10 334
3 PTB-XL 16 094
4 Ningbo 34 905
5 Chapman/CUSPH 10 646
6 Hefei 44 142

Total 122 998

In our training data (described in Table 1), we excluded
the INCART dataset containing very long signals, the PTB
dataset containing signals from a small number of patients
and the CPSC-Extra dataset. Moreover, we omitted ECGs
from the PTB-XL dataset that were not validated by hu-
man. On the contrary, we added data from the Hefei
Cup [3] containing a large number of ECGs with a rela-
tively wide range of labels.

2.2. Labels

In the provided training data, the labels from the original
datasets were mapped to the SNOMED-CT codes. In our
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solution, we omitted the Brady (bradycardia) and BBB
(bundle branch block) labels due to their unclear seman-
tics and the LPR (prolonged PR interval) label due to the
small number of positive labels.

The two-valued logic for the provided labels seems to
be insufficient. For example, all ECGs originated from the
CPSC2018 dataset have the SB (sinus bradycardia) label
set to 0 in the Challenge training set, since SB was not
evaluated in CPSC2018. However, almost 700 ECGs from
them indicate the sinus bradycardia symptoms. Therefore,
instead of the provided binary values, we used our own
mapping based on the following three-valued logic:

• Value 1 – the diagnosis/anomaly occurs in the ECG,
• Value 0 – the diagnosis/anomaly certainly does not oc-

cur in the ECG,
• NA value – it is not known whether the diagnosis/

anomaly occurs in the ECG.

Moreover, we set the NA values in cases of inconsis-
tency with other labels or with calculated parameters.

For some labels, the ambiguous semantics causes a seri-
ous problem. For example, the NSR (normal sinus rhythm)
label has different semantics for the ECGs originated from
the CPSC2018, G12EC, and PTB-XL datasets. Because
its semantics for undisclosed test data is unknown, it is not
clear how to set up the prediction model.

2.3. Neural Network Architecture

As a backbone of our solution, we implemented the deep
convolutional network by 1D variant of the ResNet50 [4].
All ECGs in our training set have a sampling rate of 500
Hz and the network inputs slices of length 4608 timesteps,
which are gradually shortened to 18 final timesteps.

The backbone maps the ECGs to a fixed-dimensional
space of latent variables. Since the latent space dimension
of the standard ResNet50 is 2048, we use width ¼ corre-
sponding to only 512 latent factors. We apply 1D kernel
of size 5, our network contains approximately 1.2 million
parameters. Compared to the 2D variant with more than
25 million parameters, our 1D variant has a significantly
smaller number of parameters, and requires less memory
and computing power.

The overall architecture is presented in Figure 1. The in-
put layer is followed by the Flow-Mixup [5] layer, which
adds random convex combinations of samples to the orig-
inal batch. This doubles the size of the input batch. Flow-
Mixup also allows to mix samples on layers deeper in the
network, but in our solution the use of manifold mixup on
one or two deeper layers has not yet led to better results.

Finally, the obtained latent factors are placed on the unit
sphere using `2 normalization and then a simple linear
layer is added. In the output layer, the neurons correspond
to the individual labels and output their probabilities.
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Figure 1. Neural network architecture.

2.4. Phase 1 – Base Model Training

In network training, the weighted binary cross entropy
loss function (BCE) was used. We set the weights of posi-
tive and negative classes separately for each label (the NA
class always had a weight of 0). Due to the class imbal-
ance, we usually set the weight of the negative class to 1
and the weight of the positive class from 2 to 4.

Although the original task was defined for 5 different
lead configurations, we trained only 3 models listed in Ta-
ble 2. The leads used in models are highlighted in bold (the
augmented leads were excluded). The models are ordered
according to the number of actually used leads downward.
For remaining lead configurations, we calculated lead III
from leads I and II and used the appropriate built model.

Table 2. Trained models.

Model Available/Used leads N used
12-lead I, II, III, aVR, aVL, aVF, V1-V6 9
4-lead I, II, III, V2 4
6-lead I, II, III, aVR, aVL, aVF 3

We applied the Discrete Wavelet Transformation (DWT)
to remove the baseline wandering [6] with level 9 and
wavelet family db8. All signals were converted to the val-
ues in millivolts. Moreover, we extensively used data aug-
mentation such as the random fixed-length slices, a lead
rescaling, a lead dropout, and a periodic slice cutout.

To train and evaluate our models, we employed 10-fold
cross-validation using eight folds as the training set, the
ninth as the validation set, and the tenth as the held-out test
set. We selected the best model based on the achieved mi-
cro F2-score on the validation set. The result of the training
was an ensemble model composed of 10 neural networks.

We trained the model using the AdamW optimizer with
a weight decay of 0.0005, a batch size of 128 (doubled by
Flow-Mixup), and the OneCycle learning rate schedule [7]
total of 100 epochs for each fold.
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The proposed neural networks process an ECG record-
ing slice of approximately 9 seconds in length. However,
we need to predict longer ECGs, as well. Therefore, for
validation and test data, we apply several slices evenly dis-
tributed in the ECG recording. For each slice, we predict
the respective labels, and we obtain the resulting prediction
using the maximum of the predicted probabilities.

2.5. Phase 2 – Fine Tuning for Challenge

The main result of Phase 1 is the extraction of quality
latent factors that allow the prediction of individual labels
in ECGs. In Phase 2, these latent factors are fixed, i.e., the
network weights obtained in Phase 1 are frozen. Then, an-
other output layer is added that produces label probabilities
optimized for the Challenge metric.

The Challenge metric is a generalized version of the Ac-
curacy measure, in which, even in the case of an inaccurate
classification, partial reward is included when predicting a
medically similar label. The reward amount for the com-
bination of the predicted and true label is defined in the
scoring matrix W. If the vector p contains the predicted
classes from the set {0, 1} and the vector t includes the
true classes for a sample, then the non-normalized metric
for that sample can be expressed as follows:

M =
pᵀWt∑

(pᵀ(1− t) + t)
. (1)

We used the relaxed version of the metric M . For the vec-
tor p containing the predicted probabilities of individual
labels from the interval (0, 1), we defined a loss function
L = − log(M) with the average value for all samples in
the batch having at least one true label

(∑
t > 0

)
. The

loss function is not used separately but only in combina-
tion with BCE in an appropriate ratio (from 1 : 1 to 1 : 10
in favor of the loss function L). BCE, unlike the loss L,
is non-zero even in cases where all true classes are 0, and
thus allows learning from such cases.

In this way, we obtained a novel output layer optimized
for the Challenge metric. This layer was trained on our
proposed three-valued labels, however, the validation and
test sets in the Challenge are evaluated against the original
binary labels. Since they have different semantics for the
CPSC2018 and G12EC datasets (Section 2.2), we added
two additional linear layers, one for CPSC2018 and one
for G12EC. Each of them was trained separately on the
corresponding dataset with the original labels.

When predicting on a test set, it is necessary to decide
for each sample which of the three additional network out-
puts to apply. For this purpose, we used a discrimina-
tor network similar to the label prediction network, which
solves the classification into three classes – CPSC2018,
G12EC and Other datasets. We trained the discrimina-
tor on a large multi-source training set separately with-

out mixup and any pre-processing that unifies the signals.
Note that for the label prediction network training, it is
recommended to remove the signal properties allowing to
identify the source dataset. Then the network learns gen-
eral rules and not the specifics of a particular dataset.

3. Results

The 10-fold cross-validation applied in Phase 1 provided
F2-scores for individual labels in the large multi-source
training set. The results allow us to compare how well
the models predict individual labels and what are the dif-
ferences in the prediction quality between the models with
different numbers of leads.

Table 3. Comparison of F2-score for individual models.

12-lead 4-lead 6-lead 6 vs.12
SB 0.9936 0.9933 0.9935 99.99%
STach 0.9861 0.9862 0.9861 100.00%
AF 0.9475 0.9467 0.9470 99.95%
PR 0.9342 0.9274 0.9152 97.97%
CRBBB 0.9194 0.9034 0.8865 96.42%
LBBB 0.8979 0.8949 0.8810 98.12%
NSR 0.8867 0.8643 0.8494 95.79%
PVC 0.8598 0.8567 0.8446 98.23%
LAD 0.8513 0.8555 0.8567 100.63%
RAD 0.8222 0.8305 0.8207 99.82%
IAVB 0.8052 0.8032 0.7933 98.52%
SA 0.8051 0.8065 0.8051 100.00%
PAC 0.7870 0.7815 0.7786 98.93%
TAb 0.7748 0.7487 0.7337 94.70%
AFL 0.7716 0.7290 0.7209 93.43%
TInv 0.7629 0.7343 0.7202 94.40%
LAnFB 0.7619 0.7574 0.7583 99.53%
LQRSV 0.6989 0.6153 0.5586 79.93%
IRBBB 0.6580 0.5489 0.3446 52.37%
QAb 0.6414 0.6335 0.5272 82.20%
LQT 0.5816 0.5604 0.5310 91.30%
PRWP 0.5169 0.4040 0.1640 31.73%
NSIVCB 0.4184 0.4092 0.3717 88.84%

Table 3 shows the results using the F2-score metric. The
labels are ordered according to the performance of the 12-
lead model. In addition to the F2-score values for the three
models used, the relative performance of the 6-lead model
to the 12-lead model is given in the last column. This in-
dicates whether the information from the three limb leads
allows the same accurate prediction of the individual la-
bels as the information from the twelve leads. Labels can
be divided into four groups according to the percentage de-
crease in prediction quality differentiated by colors: dark
green to 0.5%, light green from 0.5% to approximately 2%,
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orange from 3% to 10%, and red above 10%.
It remains to verify that the prediction quality does not

decrease even after omitting lead III. Table 4 contains
Challenge score on the validation set obtained during the
official round of the competition, and the score and rank on
the test set [1]. The prediction for the 2-lead dataset was
performed using the 6-lead model after calculating lead III
from leads I and II. A similar procedure was used for the 3-
lead dataset using the 4-lead model. The validation scores
with the calculated and actual lead III are very similar.

Table 4. Challenge score on validation and test data.

Dataset Validation Test Rank
12-lead 0.717 0.52 6

4-lead 0.703 0.52 5
3-lead 0.702 0.52 4
6-lead 0.680 0.52 3
2-lead 0.681 0.52 5

4. Discussion and Conclusions

The achieved results show that it is enough to consider
three of the five examined lead configurations, the missing
limb lead can be calculated using the other two without
affecting the accuracy of the prediction. For 2-lead config-
uration, several observations were made:

1. There is almost no decrease in accuracy for rhythm la-
bels (SB, STach, SA, AF) and heart axis deviation labels
(LAD, RAD).

2. There is a group of various labels (LAnFB, LBBB,
IAVB, PVC, PAC, PR) where the decrease in accuracy
is small (up to 2%).

3. For some labels (PRWP, LQRSV), the insufficiency of
two leads was expected, but the presence of precordial
leads also appears to be important for the identification
of several other labels.
The created prediction models have poor results in the

prediction of several labels at the bottom of Table 3, even
with the availability of 12 leads. We suppose that the main
limiting factor in obtaining better models is the quality of
the labels and the inconsistency of their semantics across
different data sources.

We believe that a service for the automatic identification
of cardiac abnormalities in the ECGs, based on artificial
intelligence, which can be constantly improved with the
growing amount of processed data, could be useful 1) for
rapid diagnostics in the absence of a cardiologist, 2) for
early detection of heart disease in preventive examinations,
3) for additional automatic verification of all ECG findings

generated in hospitals, 4) for self-diagnostics in connection
with wearable electronics devices, 5) as an aid in teaching
medics. As our contribution in this direction, we decided
to make our solution publicly available on the web [8].
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