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Abstract 

Aortic Stenosis (AS) is a heart valve disease 

characterized by the narrowing of the aortic valve 

opening. Currently AS is primarily diagnosed using 

echocardiography performed by a trained specialist. We 

aimed  to evaluate the ability of non-invasive 

microelectromechanical system (MEMS) based 

seismocardiography (SCG) and gyrocardiography (GCG) 

sensors to detect AS in individual cardiac cycles in subjects 

by measuring the cardiac-induced vibrations produced by 
the mechanical activity of the heart. 

Data was collected from 20 AS subjects and 51 healthy 

subjects using a custom data logger capable of measuring 

SCG, GCG, and single-lead ECG. The captured SCG and 

GCG signals were segmented into individual cardiac 

cycles. A continuous wavelet transform was applied to 

produce time-frequency representations of each cardiac 

cycle.  Each SCG and GCG axis of motion was then 

overlaid and  fed as an input to a convolution neural 

network (CNN). Using leave-subject-out cross validation, 

the model produced specificity of 98.42%, sensitivity of 

98.14%, and average accuracy of 98.36%. 
 

1. Introduction 

Cardiovascular diseases (CVDs) are the number one 

cause of death globally. In the year 2016, an estimated 18 

million people died from CVDs [1]. It is projected that by 

the year 2035, over 130 million adults in the US alone will 
have some form of CVD, with total costs of treatment 

related to CVDs expected to reach $1.1 trillion [2]. AS is 

the most common heart valve disease and the third most 

common CVD behind hypertension and coronary artery 

disease. It is also the most common reason for aortic valve 

replacement procedures [3]. Patients with asymptomatic 

AS have a survival rate comparable to that of age-matched 

healthy control patients. The survival rate rapidly 

decreases after symptoms begin to appear. The primary 

diagnostic test used to identify AS is transthoracic 

echocardiography performed by a trained specialist [4].  

The goal of this work is to investigate the suitability of 
SCG and GCG to detect aortic stenosis earlier and without 

the need of trained specialist to carry out physical 

examinations on patients. By combining sensor technology 

and machine learning techniques to create a system to 

detect AS earlier, we may be able to help clinicians identify 

AS earlier than with standard methods used today alone. 

 

2. Methods and Materials 

Figure 1 gives an overview of the overall pipeline used 

from data acquisition to model training. 

 

 

Figure 1: Overall pipeline of proposed method 

A custom data logger was used to capture time-series 

signals from the subjects. Three-axis SCG signals were 

measured with a MEMS based accelerometer (ADXL355 

Analog Devices) while the three-axis GCG signal was 

measured using a 3D digital accelerometer and gyroscope 

system (LSM6DS3 STMicroelectronics), where only the 
gyroscope signal was used. Single lead ECG signal was 

measured using a MAX30003 (Maxim Integrated). 

After the signals were captured, the ECG signal was 

filtered to remove any noise to be able to automatically 

detected the R-peak locations in order to segment the SCG 

and GCG signals. R-peak detection was performed in 

python3.8 using the Neurokit2 python library with the 

default R-peak detection algorithm [5].  

After R-peak detection, the SCG and GCG signals were 

segmented into individual cardiac cycles based on the 

detected RR-intervals. Once segmentation is complete, the 
cardiac cycles that were most similar to each other based 
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on the Z-axis of the SCG signal, were selected while the 

rest of the cardiac cycles were discarded.  

The saved cardiac cycles were then processed using a 

continuous wavelet transform (CWT). The output of the 

CWT produced a time-frequency matrix representation of 
each cardiac cycle. The CWT was applied to each axis of 

the SCG and GCG signal and then the matrices were 

overlaid to form an image that contained six channels 

representing each axis of motion from the SCG and GCG 

signals.  

 

2.1. Dataset 

A total of 72 subjects were collected for this study 

between May 2018 to December 2020. 21 subjects who 

had been diagnosed with severe aortic stenosis and 51 

healthy control subjects who were known to have no prior 

cardiovascular issues. One patient diagnosed with AS also 

suffered from atrial fibrillation so they were excluded from 

the model development leaving 71 subjects to train and test 

the model.  The 20 AS  subjects used for model 

development were collected at the Turku University 

Hospital and consisted of 10 male and 10 females and had 

an average age of 78.  
The healthy control group was collected at the digital 

health technology lab at the University of Turku and no age 

or sex information was gathered. The control group mainly 

consisted of students and faculty from the University of 

Turku and as such, the subjects were much younger and 

comparable in age to the control group in a related study 

concerning AS classification by Yang et al. [6]. 

 

2.2. Signal processing 

ECG, SCG, and GCG were acquired at the following 

sampling frequencies: 128, 416, and 208 Hz. The signals 

were then synced and resampled to 200Hz. SCG and GCG 

signals were band pass filtered using a zero phase 4th order 

Butterworth filter with cutoff frequencies of 1 to 65 Hz. 

The low pass value of 65 Hz was selected because of the 

digital low pass filter implemented in the LSM6DS3 

gyroscope which limits the signals frequency content to 

66.7 Hz. The signals were then normalized by dividing 
each channel by its standard deviation. Filtering performed 

on the SCG and GCG signals was performed using the 

SciPy python library.  

The ECG signal was high pass filtered using a 5th order 

Butterworth filter with a cutoff frequency of 0.5 Hz. This 

was performed using the default parameters from the 

“ecg_clean” function from the NeuroKit2 python library.  

 

2.3. Segmentation and Beat Selection 

 When measuring SCG from a subject the signal’s 

morphology and frequency components can vary from one 

cardiac cycle to the next [7]. To eliminate this variability 

within a subject’s measurement the beats can be separated 

depending on their similarity. Another issue can occur if 

noise is present in the ECG signal during acquisition. This 

can cause the peak detection algorithm’s accuracy to be 
effected. We can address both of these issues by 

performing beat selection.  

An R-peak detection algorithm “ecg_findpeaks” from 

NeuroKit2 was used with default parameters. After the 

SCG and GCG signals were segmented based on the 

detected R-peak locations, a grouping method based on 

dynamic time warping (DTW) [8] using the python 

implementation of the FastDTW [9] library was 

implemented using the Z-axis SCG signal. The following 

steps were performed to select the beats with the highest 

similarity. This method was inspired by a similar method 

from Dehkordi et al. [7]. 
 

1. For all cardiac cycles in a single measurement, 

calculate the DTW distance measure DTWD, 

between all cycles using the Z-axis of the SCG 

signal. 

2. The output is an n n-by-n matrix where n is equal 

to the number of cycles in the recording. Each 

entry in the matrix will correspond to the DTWD 

between two given cycles while the leading 

diagonal of the matrix contains zero values 

because of the distance measure calculation 
between a given cycle and itself. 

3. Compute the average value of each column, which  

measures the average DTWD of a given cycle to all 

other cycles. 

4. Select the cycle with the minimum average DTWD 

measurement DTWAvMin; consider that cycle to be 

SCGminD. 

5. Calculate DTWD between SCGminD and all other 

cycles. 

6. If DTWD between SCGminD and a given cycle is 

less than DTWAvMin, select that given cycle, 

otherwise the cycle is removed. 
 

This process ensures that cardiac cycles that possibly 

contain noise such as motion artifacts or are not true 

cardiac cycles because of errors produced during RR-

interval detection are excluded. One notable drawback of 

this method is the assumption that the overall signal quality 

of the recording is acceptable. If the SCG recordings have 

a low signal to noise ratio this method may perform poorly. 

      Figure 2 below shows a plot from one patient, which 

highlights the morphological differences in the selected 

and discarded cardiac cycles for one patient. The green and 
red plots represent the selected and discarded beats, while 

the black signal represents the ensemble average of all the 

beats for each group.  
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Figure 2: Overlaid selected and discarded cardiac cycles 

from a subject diagnosed with AS. The plotted Z-axis SCG 

signals are band pass filtered between 20-99 HZ for 

visualization purposes. 

For the subject shown in Figure 2, 373 cardiac cycles 

were analyzed. After applying the proposed beat selection 

method, 55 beats were discarded, leaving a total of 318 

cardiac cycles. When plotting the selected and discarded 

beats for different subjects a few common patterns 
appeared across the dataset.  

Firstly, the selected beats share a more uniform pattern 

and the ejection period of the cardiac cycles can be roughly 

estimated by looking at the two large peaks present in the 

green plot. When examining the lengths and amplitudes of 

the cardiac cycles between the two groups of beats we 

notice differences as well. In the green plot, the amplitude 

across the cardiac cycles do not present many random 

peaks that could be associated with noise. While we see 

large amplitude spikes in the red plot of discarded beats. 

The length of time of the cardiac cycles between the two 
groups vary greatly as well. This could be due to poor ECG 

signal quality or motion artifacts during signal acquisition 

causing the R-Peak detection algorithm to fail for certain 

cycles.  

 

2.3. Time-Frequency Image Representation 

Time-frequency representation of different kinds of 
time series data has become a popular type of data input 

for CNNs. Yang et al. [10] converted 10-second segments 

of single axes of SCG into 1-D images as inputs to CNNs. 

Torres et al. [11] applied CWT to 1.2 second windows of 

ECG data in order to convert the time series data to time-

frequency representations to be later fed into a CNN as 

well.  

Individual cardiac cycles were converted into time-

frequency matrices using the continuous wavelet transform 

with the Morlet wavelet selected as the mother wavelet. 

Each axis of the SCG and GCG signals were converted into 
time-frequency matrix representations of their axis of 

motion and then were overlaid to form an image of 

dimensions H-by-W-by-D. H represented the height of the 

image which was determine by selecting a fixed amount of 

scales, W representing the width of the image which is the 

length of the cardiac cycle, and D representing the depth of 
the image which would be the 6 axes of motion captured 

by the SCG and GCG signals. 

 

 
Figure 3: Overview of cardiac cycle transformation to a time-

frequency matrix image with six channels. Selected colors for 

time-frequency image used for visualization purposes only. 

The CWT was performed in python using the 

PyWavelets [12] python library. 25 scales representing 

frequencies between 1 to 65 Hz were selected for the height 

of the image. This frequency range is equivalent to the 

passband of the filter applied before applying CWT. For 

different subjects the dominant frequency can vary across 

a wide range of frequencies [13] so the decision was made 

to capture frequency content from the entire available pass 

band. Castiglioni et al. [14] suggest that frequencies above 

18 Hz may be related to valve closures, while lower 
frequencies may relate to heart contraction. By selecting 

scales that cover these frequencies ranges it may be 

possible to differentiate between cardiac cycles that show 

poor heart and valve function. 

  After all cardiac cycles were converted to images, the 

images were resized to a fixed dimension of 25-by-120-by-

6 and normalized to values between 0 and 1. Resizing was 

necessary in order to perform mini-batch training for the 

CNN model developed for this method.  

 

2.4. CNN Model Description 

CNNs have been a proven method in the task of image 

classification and have been used in tasks concerning bio 

signal time series classification such as [10][11]. CNNs 

can extract features from time-frequency image 

representations, which can capture morphological changes 

in cardiac cycles between healthy and diseased individuals. 

Figure 4 gives a visualization of the CNN architecture used 
in this study. This architecture is a simple CNN with only 

convolutional layer. A simple architecture was chosen to 

reduce complexity and prevent overfitting.  
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Figure 4: A 3D summary view of the proposed CNN 

architecture. The dimensions are given at each layer of the 

network. 

The CNN was developed using TensorFlow and 

consisted of one convolutional layer with 64 filters and a 

kernel size of 5 and a stride of 1 with a ReLU activation 

function. A drop out of 0.2 was applied to the output of the 

first convolution. This was followed by a max-pooling 

layer with a pool size of 2. After pooling the feature maps 

were flattened and fed into 2 consecutive fully connected 

layers of size 128 and 64 both with ReLU activation 

functions. Finally, the output of the FC2 layer was fed into 

an output layer with a softmax activation to produce a 
decision. Training was performed over 30 epochs with a 

learning rate of 8e-5 using the ADAM optimizer with the 

loss function being set to categorical cross entropy. 

 

3. Model Evaluation and Results 

A leave-subject-out cross validation approach was 

chosen to estimate the models performance. Each subject 
and the cardiac cycles associated with that subject was 

used as a test set while a new model was trained using the 

remaining subjects and their cardiac cycles. The true and 

predicted values from each round of cross-validation were 

pooled together. For the AS class, precision, recall, F1-

score, and average accuracy per subject were the 

following: .95, .98, .96, and .98 for 7706 cardiac cycles. 

For the healthy control class, precision, recall, F1-score 

and average accuracy per subject were: .99, .98, .99, and 

98 for 26770 cardiac cycles.  Table 1 shows that the 

proposed method performs on par compared to a similar 
study concerning AS classification when using a healthy 

population as the control group. 

 
Table 1: Comparison of classification results between AS 

subjects and healthy controls.  

Method Statistics 
  

 
Specificity Sensitivity Accuracy 

Proposed Method 98.42% 98.14% 98.36% 
[6] 98.18% 97.27% 97.73% 

4. Conclusion 

The proposed method was able to perform well when 

separating between AS patient cardiac cycles and health 

control group cardiac cycles. One main limitation of this 

study is the lack of an age and sex matched control group. 

A  new age and sex matched control group will need to be 

gathered to further validate the proposed approach with a 

more realistic control set. 
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