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Abstract

In the PhysioNet/Computing in Cardiology Challenge
2021, our team, DrCubic, develops a novel approach to
classify cardiac abnormalities using reduced-lead ECG
recordings. In our approach, we incorporate peak detec-
tion as a self-supervised auxiliary task. We build the model
based on SE-ResNet, and integrate models of different in-
put lengths and sampling rates. Inspired by last year’s
challenge results, we investigate various settings and tech-
niques, and select the best ones, considering the intra-
source performance and inter-source generalization simul-
taneously. Our classifiers receive scores of 0.49, 0.50,
0.50, 0.51, and 0.48 (ranked 9th, 8th, 7th, 5th, and 9th
out of 39 scored teams) for the 12-lead, 6-lead, 4-lead, 3-
lead, and 2-lead versions of the hidden test sets with the
Challenge evaluation metric.

1. Introduction

Electrocardiogram (ECG) is the most common non-
invasive tool to screen and diagnose cardiac arrhythmias.
However, such diagnoses are labor-intensive and require
years of training. With the advancing machine learn-
ing and deep learning techniques, computer-aid meth-
ods are promising to detect cardiac abnormalities. The
PhysioNet/Computing in Cardiology Challenge 2021 pro-
vides a platform to develop automatic models for classify-
ing cardiac abnormalities from reduced-lead ECG record-
ings [[1,12].

We start Challenge 2021 by analysing the Challenge
2020. Last year, most of the top teams utilize deep
convolutional neural network (CNN) and attention mech-
anism (Transformer or Squeeze-And-Excitation) [3H6],
which means CNN is the winner and attention mechanism
counts. From the results on hidden test sets of Challenge
2020, we observe that models perform well on the data
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source which also appears in the training sets, but gen-
eralize poorly on the unseen hidden undisclosed dataset.
To better understand and compare the performance of the
models, we calculate the challenge score of random out-
put on all training sets and on the Georgia training set as
two weak baselines. The two baselines achieve the scores
as 0.2832 and 0.3263 respectively. What surprizes us is
that many models can not compete against the two ran-
dom baselines, especially on the unseen dataset. We also
observe that the final scores on the whole test set are basi-
cally aligned with the scores on the hidden undisclosed set,
which means the performance on the unseen data source is
vital, and generalization is the key. Consequently, when in-
vestigating various settings and techniques, we simultane-
ously consider intra-source performance and inter-source
generalization to select the best ones.

Challenge 2021 provides multi-source datasets from dif-
ferent countries [7], INCART [8], PTB (-XL) [9,10],
Chapman [11] and Ningbo [[12]. To compare various tech-
niques and settings in terms of intra-source performance
and inter-source generalization using these datasets, we de-
sign the two data split settings, as shown in Fig[I] The data
split in Fig[l](a) is for intra-source performance. CPSC
and Georgia datasets are randomly split into a training set,
a validation set, and a test set, which matches the online
validation set. The data split in Fig[T](b) is for inter-source
generalization. The Georgia dataset is split solely as the
test set.

Under the two data split settings, we investigate differ-
ent techniques, including domain alignment methods, dif-
ferent network architectures, domain knowledge aid, semi-
supervised learning, and ensemble learning. Our solution
mainly consists of SE-ResNet, peak detection as a self-
supervised auxiliary task, and ensemble learning.

In this section, we present our final solution for this
years’ challenge.
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Figure 1: Two data split settings for intra-source perfor-
mance and inter-source generalization respectively. (a).
CPSC and Georgia datasets are randomly split into a train-
ing set, a validation set, and a test set. (b). Georgia dataset
is solely split as the test set.

2. Method

2.1. Preprocessing

We remove INCART and PTB datasets. All recordings
are resampled to 500 Hz. We randomly cut or zero-pad the
recordings to the length of 4992 (about 10 seconds). We
also apply a wavelet transformer to filter noise.

2.2.  Abnormality classification task

The backbone of our SE-ResNet is the same as [6],
and the whole network structure is as FigJ] We add a
branch on the middle of the backbone, which outputs the
results for peak detection. There is a hyperparameter array
[t1,t2,t3, t4]. For each t;, i denotes current stage number,
t; denotes the number of the SE-Res Block in the stage.
There are 4 stages. At the first SE-Res Block in each stage,
a Max-Pooling layer with a stride of 2 is applied to down-
sample the recording. To deal with different leads of input,
we keep all other settings static and only change this array,
[3,4,6,3], [3,4,4,3], [3,4,2,3], [2,3,4,2] and [2, 3,2, 2]
respectively for 12-lead, 6-lead, 4-lead, 3-lead and 2-lead
recordings.

For the abnormality classification task, the main differ-
ence between our solution and [[6]] is that we utilize an
asymmetric loss (ASL) [13] for the multi-label classifica-
tion problem. The ASL loss is a strong multi-label version
of focal loss. There are 26 labels for each recording, but
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Figure 3: One recording as multiple grids.

usually, only a small number of the labels are positive.

K

1
Lclassification = ? Z ASL(pk7 yk) (1)
k=0

We utilize ASL to alleviate such a label imbalance prob-
lem. Three hyperparameters (A, A_, m) need to be set.
We set A, as 1, A_ as 4 and m as 0.05 to reduce the con-
tribution of negative labels. For details of ASL loss, please

refer to [13].
2.3. Peak detection as an auxiliary task

We extend [[I4] to detect all 5 kinds of peaks. We add
a branch before the last stage of SE-ResNet. The branch
consists of a multi-layer-perception and a convolutional
layer with a filter size of 3 x (2 + 5). The output of the
branch is then reshaped to (L, 3,2 + 5). L is the length
of the feature map before the last stage. The number L
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means, we treat the recording as L grids and detect peaks
in each grid, shown as Fig[3] The number 3 means we de-
tect 3 peaks in a grid at most. The 2 + 5 means, for each
grid, we predict peak detection confidence C, peak rela-
tive position z, and 5 peak classes (PQRST). The ground
truth of the peaks is calculated by [15]. The loss of peak
detection is as the formula (IZ]) where I denotes whether to
calculate the corresponding loss item when there is a peak
inside the grid or not, Acoorg and Aneep; are set as 5 and
0.2 to balance positive grids and negative grids.
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Then we combine the classification loss and peak detec-
tion loss with a hyperparameter ««. We set the « as 0.1.
During training, we pre-train the SE-ResNet only with the
peak detection task first. Then we combine both tasks to
finetune the network.

Lfinal = Lclassification + o * Ldetection (3)

2.4. Ensemble

We also integrate different models for final classifi-
cation. An ideal generalizable classifier learns the fea-
tures which truly capture the patterns for 26 classes in-
stead of the features dependent on the data source. Con-
sidering there are only 6 classes for CPSC dataset, an
ideal classifier should generalize poorly on CPSC data.
Thus, a source classifier with the same backbone as
in SE-ResNet is trained to predict whether the record-
ing is from CPSC datasets. If true, the recording is
sent to the classifier, which only outputs 6 classes for
CPSC. If not, we utilize the classifier for generaliza-
tion. The pipeline is shown as in Figld] Each of
the classifier for CPSC and genralization is integrated
with three SE-ResNet models, SE-ResNetso0m- 105, SE-
ResNetosom~ 105, SE-ResNetsoom» 15s. These SE-ResNet
models are trained with different input lengths and sam-
pling rates.
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Figure 4: Ensemble structure

2.5. Training details and post-processing

For training settings, we set batch size as 128, optimizer
as AdamW with a learning rate of 0.0002. We also linearly
warm up the learning rate for the first 3 epochs, and then
adopt a cosine learning schedule. We add early stopping
with a patience number of 4 during both pre-training and
finetuning.

As for post-processing, if all of 26 labels are predicted
negative for a recording, we label the NSR class as positive.
If the label of TInv is positive, we also label the TAb class
as positive.

3. Results

The test scores on split Georgia for inter-source gener-
alization are shown in Table[I] Although GroupDRO and
DANN are specially designed for the domain generaliza-
tion problem, both methods show no significant improve-
ment in our experiments. For peak detection as an auxil-
iary task, we observe more than 1% improvement.

The test scores on CPSC and Georgia for final intra-
source performance are shown in Table[2] Model; con-
sists of only SE-ResNetsopp,._10s- Models consists of SE-
ResNetsoon» 10s and SE-ResNetsgon» 15s- Models con-
sists of SE-ResNetsoon- 105, SE-ResNetsoon 155 and SE-
ResNetoson. 10s- We observe consistent improvement on
the Georgia dataset when we integrated more models.

The online test results are shown in Table 3l

4. Discussion and Conclusions

We investigate various techniques and settings for intra-
source performance and inter-source generalization under
two different data split settings. With experiments, we ver-
ify the effectiveness of the main components in our solu-
tion: SE-ResNet, peak detection as an auxiliary task and
our ensemble strategy. Domain knowledge and ensemble
learning are helpful for training superior cardiac abnormal-
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Models | SE-ResNet | GroupDRO | DANN | FixMatch | PeakDetection
Georgia 0.518 0.519 0.510 0.522 0.534
Table 1: The results for inter-source generalization.
Models | CPSC+Georgia | CPSC | Georgia Signals for Classifying 12-lead ECGs. In 2020 Computing
Modely 0.725 0.876 0.677 in Cardiology. IEEE, 2020; 1-4.
Model, 0.731 0.875 0.684 [S] ZhuZ,WangH, Zhao T, Guo Y, Xu Z, Liu Z, et al. Classifi-
Models; 0.742 0.872 0.705 cation of Cardiac Abnormalities From ECG Signals Using

Table 2: The results for intra-source performance.

Leads 12 6 4 3 2
Online Validation | 0.49 | 0.50 | 0.50 | 0.51 | 0.48
Ranking 9th 8th | 7th | 5th Oth

Table 3: The results of online test.

ity classifiers.

The power of the peak detection auxiliary task is still
limited by the quality of peak labels. Besides, additional
finetuning on CPSC and Georgia datasets might lead to the
performance drop on the hidden undisclosed set.

Acknowledgments

This work has been supported by National Natural Sci-
ence Foundation of China (61772409); The consulting re-
search project of the Chinese Academy of Engineering
(The Online and Offline Mixed Educational Service Sys-
tem for “The Belt and Road” Training in MOOC China);
Project of China Knowledge Centre for Engineering Sci-
ence and Technology; The innovation team from the Min-
istry of Education (IRT_17R86); and the Innovative Re-
search Group of the National Natural Science Foundation
of China (61721002).

References
[1] Perez Alday EA, Gu A, Shah A, Robichaux C, Wong AKI,
Liu C, et al. Classification of 12-lead ECGs: the Phys-
ioNet/Computing in Cardiology Challenge 2020. Physio-
logical Measurement 2020;41.

Reyna MA, Sadr N, Perez Alday EA, Gu A, Shah A, Ro-
bichaux C, et al. Will Two Do? Varying Dimensions in
Electrocardiography: the PhysioNet/Computing in Cardiol-
ogy Challenge 2021. Computing in Cardiology 2021;48:1—
4.

Natarajan A, Chang Y, Mariani S, Rahman A, Boverman
G, Vij S, et al. A Wide and Deep Transformer Neural Net-
work for 12-Lead ECG Classification. In 2020 Computing
in Cardiology. IEEE, 2020; 1-4.

Zhao Z, Fang H, Relton SD, Yan R, Liu Y, Li Z, et al. Adap-
tive Lead Weighted ResNet Trained with Different Duration

(2]

(3]

(4]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

(14]

[15]

SE-ResNet. In 2020 Computing in Cardiology. IEEE, 2020;
1-4.

Jia W, Xu X, Xu X, Sun Y, Liu X. Automatic Detection
and Classification of 12-lead ECGs Using a Deep Neural
Network. In 2020 Computing in Cardiology. IEEE, 2020;
1-4.

Liu E Liu C, Zhao L, Zhang X, Wu X, Xu X, et al. An Open
Access Database for Evaluating the Algorithms of Electro-
cardiogram Rhythm and Morphology Abnormality Detec-
tion. Journal of Medical Imaging and Health Informatics
2018;8(7):1368—1373.

Tihonenko V, Khaustov A, Ivanov S, Rivin A, Yakushenko
E. St Petersburg INCART 12-lead Arrhythmia Database.
PhysioBank PhysioToolkit and PhysioNet 2008;.
Bousseljot R, Kreiseler D, Schnabel A. Nutzung der EKG-
Signaldatenbank CARDIODAT der PTB iiber das Internet.
Biomedizinische Technik 1995;40(S1):317-318.

Wagner P, Strodthoff N, Bousseljot RD, Kreiseler D, Lunze
FI, Samek W, et al. PTB-XL, a Large Publicly Available
Electrocardiography Dataset. Scientific Data 2020;7(1):1-
15.

Zheng J, Zhang J, Danioko S, Yao H, Guo H, Rakovski C.
A 12-lead Electrocardiogram Database for Arrhythmia Re-
search Covering More Than 10,000 Patients. Scientific Data
2020;7(48):1-8.

Zheng J, Cui H, Struppa D, Zhang J, Yacoub SM, El-Askary
H, et al. Optimal Multi-Stage Arrhythmia Classification
Approach. Scientific Data 2020;10(2898):1-17.
Ben-Baruch E, Ridnik T, Zamir N, Noy A, Friedman I, Prot-
ter M, et al. Asymmetric Loss For Multi-Label Classifica-
tion, 2020.

Li X, Qian B, Wei J, Zhang X, Chen S, Zheng Q, et al.
Domain Knowledge Guided Deep Atrial Fibrillation Clas-
sification and Its Visual Interpretation. In Proceedings of
the 28th ACM International Conference on Information and
Knowledge Management. 2019; 129-138.

Makowski D, Pham T, Lau ZJ, Brammer JC, Lespinasse F,
Pham H, et al. NeuroKit2: A Python Toolbox for Neuro-
physiological Signal Processing. Behavior Research Meth-
ods feb 2021;53(4):1689-1696.

Address for correspondence:

Xiaoyu Li
No.28, Xian Ning West Road, Xi’an, Shaanxi Province, China
xiaoyuli @stu.xjtu.edu.cn

Page 4



	Introduction
	Method
	Preprocessing
	Abnormality classification task
	Peak detection as an auxiliary task
	Ensemble
	Training details and post-processing

	Results
	Discussion and Conclusions

