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Abstract

In the electrocardiogram (ECG), the QT interval is an
important metric of risk for various adverse cardiovas-
cular events and a key measure in cardiotoxicology. The
main challenge in the interpretation of the QT measure-
ment is its dependence on the heart rate, i.e., the RR in-
tervals. To correct the QT interval for heart rate, a multi-
tude of approximative methods have been developed, e.g.,
the power-law formulas of Bazett and Fridericia that are
still in clinical use. However, these methods are known
to under- or overcorrect the QT intervals, and none of the
methods developed to date are universally applicable to
different conditions.

Here we present a QT correction method that is not
based on models or empirical data, but directly utilizes in-
formation transfer between the RR and QT intervals dur-
ing the measurement. The method dynamically adapts to
a multitude of previous RR intervals and gives the QT cor-
rection as an output. We outline the essential principles
of the method and provide a set of test results that demon-
strate the stability of the corrected QT values in compari-
son with the conventional correction methods.

1. Introduction

The QT interval is the time measured from the begin-
ning of the QRS complex to the end of the T wave in the
electrocardiogram (ECG). It corresponds to the duration of
the ventricular action potential, i.e., the time for the ventri-
cles to depolarize and repolarize. Hence, the QT interval
is a direct measure for ventricular arrythmias. In particu-
lar, QT prolongation is associated with numerous adverse
cardiovascular diseases and events such as long QT syn-
drome, heart failure, coronary artery disease, torsades de
pointes, and sudden cardiac death (see, e.g., Ref. [1]).

The QT interval is also a key metric in drug develop-
ment [2]. QT prolongation has been the most common
cause of the withdrawal or restriction of drugs on the mar-
ket [3]. In 2005, a new guidance on the clinical assess-
ment of drug-induced QT prolongation was adopted, and
the ”thorough QT/QTc study” became the standard part of
drug development programs [4, 5].

The fundamental challenge in the interpretation of the
QT interval is its dependence on the heart rate (HR). Typ-
ically, low HR, i.e., long RR intervals correspond to long
QT intervals and vice versa. For this reason, the QT in-
terval needs to be compensated for the HR to obtain the
corrected QT (QTc) interval. The most commonly used
correction formula is Bazett [6] developed through a sim-
ple fitting procedure in 1920. It is still widely used despite
its known problems to under(over)correct at low (high)
HR. Fridericia’s correction [7] also from 1920 employs a
similar model with a different fitting parameter, and it is
currently the standard adopted by FDA [2], even though
several alternative formulae have been suggested, e.g., the
Hodges [8] and Framingham [9] corrections, and more re-
cently the spline QTc method [10].

An alternative approach is the individual QT correc-
tion [11, 12] employing a fitting to the baseline RR-QT
pairs of each individual. Even though this method per-
forms well and suits to thorough QT/QTc studies, its ap-
plicability to clinical practice is challenging due to, e.g.,
the QT hysteresis [13, 14]. To account for hysteresis, a
beat-to-beat method [15] that employs all raw QT-RR in-
terval data instead of any QT correction, is an appealing
alternative.

Here we employ information theory, particularly the
properties of transfer entropy [16] for the RR-QT relation-
ship [17] to properly remove the dependence of the QT
interval on the RR interval. The resulting QT correction is
completely free of models or empirical data. We demon-
strate with a few examples that our correction method
yields superior performance over the existing methods in
terms of QTc stability at varying HR.

2. Methods

2.1. Transfer entropy

The essential building block in our QT correc-
tion method is transfer entropy (TE) introduced by
Schreiber [16] and applied to the RR-QT relationship by
some of the present authors [17]. We assume that the QT
dependence on the HR is (largely) determined by the infor-
mation flow from the time-dependent RR interval process
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to the corresponding QT interval process. Thus, reducing
this information flow by setting TE to zero can yield the
(corrected) QT interval length.

TE estimates information transfer from the source to the
destination process that we may now denote directly as
RR(t) and and QT(t), respectively. In simple terms, adopt-
ing the terminology of Ref. [18], TE equals to information
flow from RR to QT, which equals to information (or un-
certainty) about future observation QT(t+1) gained from
the past observations of QT minus information about fu-
ture observation QT(t+1) gained from past observations of
both RR and QT. Formally, we can express TE from RR to
QT as [17]
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Here p(x) and p(x|y) refer to probability distributions
and conditional probability distributions. Then QT(k)

i−1 and

RR(n)
i−1 are k and n preceding values, backwards from i−1,

of QT and RR series, respectively. Previously, we have
shown [17] that TERR→QT profoundly dominates over
TEQT→RR, and that in the former case the RR history has
a long-term effect, i.e., TE increases as a function of n and
saturates at around n ∼ 10. Hence, in the following we set
QT history to k = 1 and vary the RR history in the range
n = 1 . . . 50.

2.2. Probability distributions

ECG data with RR and QT intervals are used to estimate
the probability distributions of observing QT interval val-
ues given two distinct historical contexts: (i) the QT his-
tory alone and (ii) the QT and RR history together. These
probability distributions – corresponding to the denomi-
nator and then numerator in Eq. (1) – are conventionally
called transition probabilities [16, 17]. To obtain smooth
transition probabilities for proper interpolation of QT in-
tervals we apply kernel density estimation (KDE) tech-
niques. The idea is to account each data point contributing
to the probability distribution as a kernel that has a pre-
defined shape, e.g., a Gaussian function drawn around the
given point with a specific width.

Using KDE with a Gaussian kernel we first esti-
mate the joint probability distribution of events QTi,
QTi−1,. . .,QTi−k, and, if RR history is included,
RRi−1,. . .,RRi−n for any given coupled series of RR and
QT intervals. Next, for the given interval QTi and its his-
tory QT(k)

i−1 and/or RR(n)
i−1 we take a slice of the joint dis-

tribution along the QTi axis (see Fig. 1). This slice, appro-
priately normalized according to the chain rule, represents

the one-dimensional (1D) conditional probability density
p
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or p
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QTi|QT

(k)
i−1

)
as a func-

tion of QTi. Now, equality of these two 1D distributions
warrants a zero TE from RR to QT intervals as log 1 = 0
in Eq. (1). Thus, an appropriate QT value equating the two
1D distributions in the QT space is a candidate for QTc.
In summary, the algorithm proceeds beat-by-beat drawing
the two 1D distributions for every QTi based on its history
of QT and RR intervals and finding the proper intersection
points of the distributions as demonstrated in Fig. 1.
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Figure 1. Estimation of the transition probabilities from
the data points (black) according to Gaussian kernel den-
sity estimation. The intersection of the one-dimensional
distributions as a function of QTi yields zero transfer en-
tropy and thus candidates for QTc.

2.3. QTc selection

Finally, we need to select the target QTc among mul-
tiple potential candidate QTc values corresponding to the
intersection points of the two distributions. The bottom
panel of Fig. 1 exemplifies this task with three possible
candidates (QTc1, QTc2, QTc3). The selection procedure
is a complex task of its own, and we have several options
– apart from the obvious exclusion of intersections in the
tails of the distributions, e.g., QTc1 in Fig. 1. Possible
options include but are not limited to (i) maximum prob-
ability, i.e., the highest intersection point; (ii) minimum
distance to QT0, i.e., the QT value observed at 60 BPM
(RR=1000 ms) according to the data; (iii) the mean of all
the QTc candidates exceeding a minimum threshold. In the
following we resort to option (ii) with a 2nd order polyno-
mial fit to the RR-QT point cloud to determine QT0.
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3. Demonstration

To demonstrate the performance of the method we se-
lected 15 out of 18 healthy subjects in PhysioNet [19]
”MIT-BIH Normal Sinus Rhythm” database and 3 out of 7
healthy subjects in ”MIT-BIH Long Term” database. The
selection was made according to the optimal data quality
for RR and QT intervals. The intervals were extracted us-
ing the the methods in Refs. [19–21].

350

400

450

500

550

Q
T

in
te

rv
al

(m
s)

(a) QT

QTc

QTcB

QTcF

0 50 100 150 200 250
Interval number

50

75

H
R

(b
pm

)

(b)

600 800 1000 1200 1400
RR interval (ms)

400

500

Q
T

in
te

rv
al

(m
s)

α = -0.01

αB = -0.16
αF = -0.1

(c) QT

QTcB

QTcF

QTc

Figure 2. (a) Example of QT(c) values for a healthy sub-
ject as a function of time. (b) Corresponding heart rate
during the measurement. (c) RR-QT point cloud during
the measurement.

In Fig. 2(a) we show a representative example of a con-
tinuous segment of 250 QT intervals (dashed line), to-
gether with the QTc values computed with our method
and with the Bazett (QTcB) and Fridericia (QTcF) formu-
lae. Figure 2(b) shows the corresponding HR computed as
the inverse of the RR intervals. The erroneous correction
of both QTcB and QTcF (here mainly undercorrection) is
clearly visible at HRs that are considerably below or above
60 BPM. For example, the increase in HR at 40-50 beats
leads to a significant increase in both QTcB and QTcF –
beyond the normal range – whereas our method shows only
a moderate and short perturbation, which is preceded and
followed by stable behavior. Overall, the standard devia-
tion of our QTc values throughout the segment is only a
fraction of that of QTcB and QTcF.

Figure 2(c) shows the RR-QT(c) point clouds of the
same segment, together with linear fits to the data. First,

it is noteworthy that the raw QT values are widely dis-
tributed, i.e., the variance of QT values is large at a fixed
RR range. Secondly, the undercorrection of Bazett and
Fridericia formulae is clearly visible as the points follow
a trend with slopes αB = −0.16 and αF = −0.1, respec-
tively. In contrast, our method yields a nearly horizontal
line with α = −0.01. Thus, there is practically no under-
or overcorrection in the QT values. In addition, all the QTc
points are densely distributed along this horizontal line.
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Figure 3. (a) Mean and standard deviation (SD) of QT(c)
values over the full measurement for all the 18 subjects,
respectively (points). The color of the points indicate
the method (raw QT in gray). The rectangles visualize
the method-specific distributions of each point cloud (see
text).

In Fig. 3 we demonstrate the overall performance of our
QTc method for all the 18 subjects under study. Each point
shows the subject-specific mean QT(c) over the measure-
ment (x axis) together with the standard deviation (SD).
The rectangles show the method-specific distributions over
all the subjects. Here the width and height of each rectan-
gle is twice the SD of the points in x and y direction, re-
spectively. There are significant individual differences in
the mean QTc regardless of the method as demonstrated
by the widths of the rectangles. Importantly, however, the
SD(QTc) of every subject is significantly reduced with our
method. For example, the SD’s of Bazett are focused in the
range 25− 45 ms, whereas the corresponding range in our
method is only 10 − 20 ms. We are currently performing
further analysis of RR-QTc behavior, including larger sets
of data.
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4. Summary

In this work we have first introduced the relevance of the
QT interval and the challenges in its interpretation, espe-
cially to correct for the heart rate, and outlined the present
approaches to QT correction. Then we have presented a
QT correction method that stems from information trans-
fer from RR to QT intervals. We have demonstrated with
a few examples of normal subjects that our method out-
performs the conventional methods in stability at varying
heart rate. Our QTc method is currently being validated for
large datasets, and we foresee extensive use for the method
both in academic and clinical studies, as well as in drug de-
velopment in the future.
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