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Abstract

This paper proposes a deep neural network architec-
ture to perform multi-label classification of 26 cardiac
abnormalities from 12-lead and reduced lead ECG data.
The model was created by team ”NIMA” for the Phys-
ioNet/Computing in Cardiology Challenge 2021. ECG sig-
nals of at most 20 seconds in length were used for training.
The data are preprocessed by normalizing, resampling,
and zero-padding to get a constant-sized array. The pre-
processed ECG signals and Fast Fourier Transforms ob-
tained from the preprocessed signals are each fed into two
separate deep Convolutional Neural Networks. Spatial
dropouts and average pooling are used between each con-
volutional layer to reduce overfitting and to reduce model
complexity. Following the convolutional layers, the time
and frequency domain network outputs are concatenated
and passed through two dense layers that output an ar-
ray of size 26. A threshold of 0.13 is used on the output
array to determine the class while addressing data imbal-
ance. The method achieved a score of 0.55, 0.51, 0.56,
0.55, and 0.56 ranking 2nd, 5th, 3rd, 3rd and 3rd out of 39
officially ranked teams on 12-lead, 6-lead, 4-lead, 3-lead,
and 2-lead hidden test datasets, respectively, according to
the challenge evaluation metric. Our model performs com-
parable to the 12 Lead ECG using smaller subsets of leads.

1. Introduction

Cardiovascular diseases have a high prevalence (in the
USA for 49.5% of adults >20 years) and are a major
cause of death [1]. An electrocardiogram (ECG) mea-
sures the heart’s electrical activity and helps the diagno-
sis of cardiovascular diseases by identifying various ab-
normalities in patterns. Automatic detection of cardiac
abnormalities from ECGs has many benefits, including
early detection and better prognosis. While such imple-
mentations often use the standard 12-lead ECGs, using a
smaller number of leads would enable low-cost, portable,

and user-friendly point of care devices. However, it re-
mains largely unexplored whether similar outcomes are
achievable using reduced leads. The objective of The Phy-
sioNet/Computing in Cardiology Challenge 2021 was to
find automated, open-source approaches to identify multi-
ple cardiovascular diseases from 12-lead and reduced-lead
ECG data [2, 3].

Deep learning methods have recently gained popularity
in classifying various cardiac abnormalities in addition to
traditional methods such as support vector machines, lin-
ear regression, decision trees, and feed-forward neural net-
works [4, 5]. In this work, we propose and investigate the
suitability of a deep learning-based method using the time
domain and frequency domains of ECG signals to classify
26 different classes of cardiac abnormalities using 12-lead
and reduced-lead ECG data.

2. Methods

2.1. Dataset

Local training is done using the CPSC [6], PTB
[7], PTB-XL [8], INCART [9], Chapman-Shaoxing [10],
Ningbo [11] and Georgia databases with 88,259 12-Lead
ECG signals. Recordings with a length greater than 20 sec-
onds are not used for training (<3% of the dataset). The
final dataset containing 85,811 records is randomly divided
into a training dataset (79,791 records) and a local valida-
tion dataset (6,020 records). Reduced lead ECG signals
are generated by selecting the required leads from 12-lead
ECG signals as shown in Table 1.

Leads Leads used
12 I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6
6 I, II, III, aVR, aVL, aVF
4 I, II, III, V2
3 I, II, V2
2 I, II

Table 1. Leads used in different lead sets
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2.2. Preprocessing

Firstly, all the recordings are normalized by subtracting
the baseline and dividing by the Analog-to-Digital Con-
verter (ADC) gain. Recordings that are less than 20 sec-
onds are zero-padded to 20 seconds and then resampled
at 200Hz, giving an array with 4,000 time points. Fast
Fourier Transform (FFT) is applied to the resulting record-
ings giving a complex array of 4,000 points representing
the frequency domain of the recording. Since the fre-
quency domain of a real signal is symmetric, only the first
2,000 points are selected. The magnitude and phase of the
resulting array are separated and concatenated, giving an
array of shape (2N, 2,000), where N is the number of leads.
The time-domain array is again resampled at 100Hz, giv-
ing an array of shape (N, 2,000). The 26 classes of diag-
noses are one-hot-encoded to give a binary array of size
26.

SciPy library is used for resampling and obtaining the
FFT of the signals. Both the time domain and the fre-
quency domain arrays are sent as inputs to the deep learn-
ing model.

2.3. Model Description

The model is created using the Python TensorFlow li-
brary using the Keras functional API.

Figure 1. The neural network architecture. The numbers
in brackets show the shape of the output array from the
particular block. N = number of leads

The time-domain input is sent into convolution block A
(Figure 2). It is first passed through a 1D convolutional
layer, and then Swish activation function [12] is applied to
the outputs. A skip connection is used to pass the informa-
tion from the previous layer directly to the next layer. Val-
ues from both the skip connection and the convolutional

layer are added, and Swish activation function is applied
to the outputs. Then we used 1D spatial dropout [13] with
a rate of 0.2 to reduce the overfitting of the model. The out-
puts are passed through an average pooling layer to reduce
the dimensions of the feature maps and reduce computa-
tional cost. This process is repeated four times for the time
domain signal with the number of filters increasing by two-
fold and the kernel size increasing by 2 each time as shown
in Table 2. Finally, instead of the average pooling layer, a
global average pooling layer is used to produce an output
array of size 576. We used multiples of the number of leads
for the number of filters used in the convolutional layers,
a large initial kernel size, and padding in all the convolu-
tional layers to maintain consistent dimensionality across
convolutional layers and to facilitate skip connections.

Figure 2. Convolution block A

The frequency-domain input is sent into convolution
block B (Figure 3). It is first passed through a 1D con-
volutional layer, and then the Swish activation function is
applied to the resulting output. Spatial dropout is then ap-
plied with a rate of 0.1 and then average pooled with a size
of 2. This is repeated 5 times with the number of filters in-
creasing by 2 fold and the kernel size increasing by 2 with
each repetition as shown in Table 2. Finally, a global av-
erage pooling layer is used, producing an output array of
size 1,152.

The outputs from convolution block A and convolution
block B are concatenated (Figure 3), and Swish activation
function is applied. The resultant output is fed into a fully
connected layer with 576 units. A dropout layer with a rate
of 0.5 is applied, and another dense layer of 26 units with
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Figure 3. Convolution block B (Left) and fully connected
block (Right)

sigmoid activation function finally outputs an array of size
26, which is used to predict whether the specific cardiac
abnormality is present or not. Our method classifies the 26
scored classes, including the 4 pairs of similar diagnoses
as 4 classes and is able to identify multiple diagnoses from
a single recording.

The loss and Area Under the Precision-Recall Curve
(AUPRC) are used as metrics when evaluating the model
performance while training. Training is discontinued if
the validation AUPRC values did not increase by 0.01
for 5 epochs. The data is shuffled between each epoch
and a batch size of 128 is used for training. First, the
time domain and frequency domain network hyperparame-
ters were optimized independently and then fine-tuned to-
gether. We used a grid search method to find the optimum
hyperparameters. Different lead components are used as
the number of channels when used as input to the con-
volutional layers. Only the number of input channels are
changed in the model when different subsets of leads were
used.

Block A1 A2 A3 A4 B1 B2 B3 B4 B5
Num. of
filters (x) 72 144 288 576 72 144 288 576 1152

Kernel
size (y) 15 3 5 7 3 5 7 9 11

Table 2. Hyperparameters used in the final model. A and
B stand for the convolutional block A (Figure 2) and B
(Figure 3) respectively. The number following A or B in-
dicates the repetition of each block.

Binary cross entropy is used to measure the loss. We
used Adam optimization with an initial learning rate of
0.001 for all the models. The learning rate is reduced ten-
fold after a number of epochs as shown in Table 3.

Lead set 12-lead 6-lead 4-lead 3-lead 2-lead
Epoch at which
LR=0.0001 17 23 16 16 15

Total number
of epochs 21 26 22 18 17

Table 3. Details containing the number of epochs each
lead set is trained

2.4. Model Evaluation

When evaluating, if the length of the recording is larger
than 20 seconds we segmented the recording into 20-
second windows sequentially with no overlap. If the last
segmented window is less than 5 seconds, it is discarded;
otherwise, it is zero-padded to 20 seconds. All the seg-
mented windows are sent as input to the trained model. If
the cardiac abnormality is found in at least one of the win-
dows, then the cardiac abnormality is marked as present.
We empirically determined the optimal threshold to be
0.13 by changing the threshold between 0 and 1 with a
step of 0.01 and validating against the training data using
the challenge scoring metric.

3. Results

Table 4 shows the challenge score obtained by the above
models trained on different leads on the local validation
set, hidden validation set and, the hidden test set along with
the ranking.

Leads Training Validation Test Ranking
12 0.75 0.65 0.55 2
6 0.70 0.59 0.51 5
4 0.72 0.63 0.56 3
3 0.73 0.63 0.55 3
2 0.70 0.61 0.56 3

Table 4. Challenge scores for the final accepted entry
(team NIMA) on the local validation set, hidden validation
set and, the hidden test set along with the ranking

Table 5 shows the F1 scores obtained by each class on
the local validation set.

4. Discussion and Conclusions

The classifier performs with scores ranging from 0.59 -
0.65 in the hidden validation set. Overall, the 6-lead and
2-lead sets that did not contain the V2 lead show the lowest
score. Therefore, V2 lead seems to play an important role
in classifying cardiac abnormalities. The performance on
the hidden test set is lower than the hidden validation set
but similar across all lead sets.

Multi-label data imbalance is especially harder to ad-
dress because upsampling one of the rare classes may re-
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Dx F1 Score Dx F1 Score
AF 0.59 PAC/SVPB 0.57
AFL 0.83 PR/VPB 0.89
BBB 0.28 PRWP 0.31
Brady 0.62 PVC 0.63
CLBBB/LBBB 0.75 LPR 0.46
CRBBB/RBBB 0.85 LQT 0.48
IAVB 0.68 QAb 0.35
IRBBB 0.51 RAD 0.62
LAD 0.72 SA 0.68
LAnFB 0.72 SB 0.96
LQRSV 0.50 STach 0.94
NSIVCB 0.38 TAb 0.59
NSR 0.91 TInv 0.49

Table 5. F1 scores obtained by the final model for 26
scored diagnoses on the local validation set

sult in oversampling one of the abundant classes and vice
versa. Upsampling and downsampling data both as indi-
vidual classes and as super sets of all 26 classes to create
balanced datasets did not yield better performance. There-
fore, to address the class imbalance, we used a single opti-
mized threshold on the sigmoid output.

Having a shorter input array size reduced the training
time of the model significantly while preserving informa-
tive features in the signals. Therefore, we resampled the 20
second long recordings at 100Hz. We did not include any
filtering steps to clean the ECG since it may eliminate dis-
criminating features between classes. Further investigation
is required on whether filtering improves performance.

Model variation Score
Final Model 0.745
Replacing Spatial dropout with Dropout 0.733
Without using the frequency domain 0.734
Without using the time domain 0.679

Table 6. Challenge scores for different variations of our
final model on the local validation set

Using the frequency domain as input additional to the
time domain input, using spatial dropouts, using a number
of convolution layer filters in multiples of the number of
leads, using large initial kernel sizes, using Swish activa-
tion instead of Rectified Linear Unit activation, and using
residual networks through skip connections improved the
performance and stability of the network (Table 6).
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