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Abstract

Biatrial personalized models incorporating functional
and anatomical features are becoming a promising tool
for planning therapy for patients with atrial fibrillation
(AF). Conduction velocity (CV) is one of the main fea-
tures to be matched during the process of functional per-
sonalization, as it can identify electrical abnormalities in
the cardiac tissue. The spatial distribution of CV can be
estimated from local activation times (LAT) maps from
non-invasive electrocardiographic imaging (ECGI) or in-
vasive electroanatomical mapping systems (EAMS). We in-
vestigated the effect of using either invasive LAT maps
from EAMS or non-invasive LAT maps from ECGI to per-
sonalize two biatrial models by comparing the virtual P-
waves obtained from these LAT maps with the measured
P-waves from the surface electrocardiogram (ECG). For
both modalities – ECGI and EAMS – we found a qualita-
tive match between simulated and measured P-waves but
observed quantitative differences. The root-mean-square
error (RMSE) between measured and simulated signals
for patient A was 0.26±0.11 mV and 0.38±0.31 mV, while
for patient B it was 0.21±0.09 mV and 0.14±0.05 mV for
EAMS and ECGI, respectively. The correlation between
measured and simulated signals from ECGI and EAMS
was 0.69±0.34 and 0.71±0.26 for patient A and 0.71±0.18
and 0.72±0.18 for patient B. Our results suggest that LAT
maps from ECGI and EAMS show differences, which are
also reflected in the computed P-wave on the body surface.

1. Introduction

Personalized atrial models including anatomical and
functional features have been used as mechanistic tools
to understand the dynamics of atrial fibrillation (AF) and
to predict therapy success [1]. One of the principal fea-
tures of interest in the process of functional twinning

is the incorporation of conduction velocity (CV) infor-
mation into the personalized model. CV is an electro-
physiological (EP) property that describes the direction-
dependent (anisotropic) and spatially heterogeneous speed
with which the electrical depolarization wave spreads in
the cardiac tissue [2]. Changes in CV can be associated
with the location of the underlying arrhythmogenic sub-
strate [3]. When creating a patient-specific digital model
for therapy planning, it is therefore important to match
this parameter to represent the electrical propagation accu-
rately. Mean CV can be estimated from P-wave duration
from the body surface electrocardiogram (ECG) [4]. Re-
gional CV can be calculated from local activation times
(LAT) maps obtained from non-invasive electrocardio-
graphic imaging (ECGI) [5] or from invasive intracardiac
electrograms (IEGM) [2, 6] from electroanatomical map-
ping systems (EAMS). LAT maps from EAMS have usu-
ally higher resolution and provide a more accurate repre-
sentation of the electrical propagation as the catheter is
placed closer to the cardiac source [7]. On the other hand,
ECGI has the advantage of reconstructing atrial activation
from torso recordings, eliminating the risk of an invasive
procedure.

Several research groups have described processes to cre-
ate personalized atrial models, these include the use of
only pre-procedural information such as magnetic reso-
nance imaging (MRI) and computed tomography scans
(CT) [8,9], or the use of procedural data together with non-
invasive imaging techniques [1, 10, 11]. However, it re-
mains unclear whether using non-invasive pre-procedural
data is sufficient when creating personalized atrial mod-
els for therapy planning or if further activation data is re-
quired from invasive recordings [12]. Our method gener-
ated synthetic P-waves using LAT maps from invasive and
non-invasive data. We studied the influence of the selected
input data modality on the morphology of the computed
P-waves and we finally compared them with the P-waves
measured on the surface of the torso.

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.334



Figure 1. Study pipeline: LAT data were mapped to the MRI geometry and interpolated. A precomputed atrial action
potential (AP) was placed in every node of the bilayer model and shifted in time according to the LAT. Extracellular
potentials were recovered at selected electrode positions on the torso surface to obtain virtual P-waves.

2. Methods

Data from the invasive Carto® 3 EAMS (Biosense
Webster), from the non-invasive ECGI system Acorys®
(Corify Care), and biatrial geometries from a 3-Tesla CMR
scanner (Siemens Healthcare) segmented using ADAS®
software (Galgo Medical) were obtained from two patients
at Hospital Clı́nic, Barcelona undergoing catheter ablation
of AF (Patient A: female, 61 years with persistent AF and
patient B: male 58 years with paroxysmal AF). Both pa-
tients are part of the NOISE-AF study (NCT04496336),
provided written informed consent and the protocol was
approved by the hospital ethics committee. Invasive and
non-invasive LAT maps before ablation were obtained dur-
ing sinus rhythm for patient A and during coronary sinus
pacing for patient B. A summary of the study pipeline is
presented in Figure 1.

2.1. Electrocardiographic Imaging Data

The electrical activation of the atria was reconstructed
by solving the inverse electrocardiography problem from
body surface potential recordings. The torso surface was
reconstructed from a 360° video of the patient’s chest
while wearing the 64-electrode vest. The biatrial geome-
tries from ECGI consisted of a shell of the MRI segmenta-
tion having both atria fused. The ECGI shell was already
aligned to the original MRI geometry, so no additional co-
registration step was needed. To compare the measured P-
waves to our computed P-waves, 6 electrodes from ECGI
resembling standard ECG locations were used to obtain 9-
lead reference traces (I, II, III, aVR, aVL, aVF, V1, V2 and
V6).

2.2. Electroanatomical Mapping Data

Endocardial biatrial geometries and LAT maps were
generated from the CARTO® 3 cases using IEGM record-
ings. The activation sequence was verified to disregard
LAT artifacts by leveraging a priori knowledge about the
expanding wavefront [13]. We divided the set P of points
x in the LAT map into N activation bands Γi starting at
the earliest activation point xEAP up to the latest activa-
tion point xLAP, with a temporal resolution dt= 5 ms:

Γi = {x ∈ P | LAT(xEAP) + dt · i < LAT(x) ≤
LAT(xEAP) + dt · (i+ 1)}

(1)

To disregard outliers, xEAP was defined as the center of
mass of the region below the 2.5th percentile of the LAT
distribution and xLAP of those above the 97.5th percentile.
The biggest connected island within the 2.5th percentile
of the LAT was used to initialize the first reliable region
X0. The domain of each band Γi contains Mi islands of
points x to be classified as reliable or artifact annotations.
Islands are classified as reliable and added to the region C
if a maximum distance between the centroid of the current
reliable region Xi and the centroid of the island Xi,j is
fulfilled:

∥C(Xi)− C(Xi,j)∥ ≤ 1 + i,mm (2)

Xi is then initialized with Xi−1 and a new centroid is
calculated in the next iteration. The final LAT map con-
sisted only of reliable regions and was then mapped to the
MRI geometry. For image co-registration, the veins and
valves were manually clipped using Paraview v5.9.1 (Kit-
ware). Then the centroids of the valve and vein rings were
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Figure 2. Comparison between computed and measured P-waves: Patient A data was obtained during coronary sinus pac-
ing while Patient B data was obtained during sinus rhythm. Measured P-waves are shown in black, the P-waves computed
based on EAMS LAT maps are colored in orange, and the P-waves from ECGI LAT data are colored in blue. The signals
were aligned and amplified to match the amplitude of the measured P-wave for each lead.

extracted and used as landmarks to perform rigid align-
ment of the EAMS geometry to the biatrial MRI. The itera-
tive closest point algorithm was used to further co-register
the clipped biatrial endocardial geometry to the MRI ge-
ometry with Scalismo®.

2.3. P-wave Forward Computation

Each LAT map was transferred to the MRI geometry us-
ing nearest neighbor projection and Laplacian interpola-
tion was performed to fill the gaps in the data distribution.
A bilayer model was generated for each patient from the
MRI data [13]. LAT maps from ECGI and EAMS on the
MRI surface were used to shift a pre-computed atrial ac-
tion potential template in time for each of the nodes in the
bilayer model, respectively. For the forward calculation of
virtual P-waves, extracellular potentials on the body sur-
face were recovered using openCARP [14] from the same
6 previously selected electrode locations. The atria were
assumed to be immersed in an infinite volume conduc-
tor [15]. Simulated P-waves were low-pass filtered with a
cutoff frequency of 40 Hz and then individually amplified
to match the maximum amplitude of their corresponding
measured P-wave per lead. The two sets of virtual P-waves
were aligned to the corresponding measured P-wave using
cross-correlation and the root-mean-square error (RMSE)
was calculated for the whole set.

3. Results

Virtual P-waves obtained from ECGI and EAMS LAT
maps were compared to the measured P-waves as shown
in Figure 2. For the computed P-waves based on the LAT
maps derived from both modalities - ECGI and EAMS, the
morphology matches the simulated P-waves qualitatively.
However, quantitative differences exist. The RMSE was
measured for each lead for the whole atrial activation time
defined by the P-wave duration on the surface ECG and
then averaged among all leads. Values are presented as
mean and standard deviation across all 9 leads. In gen-
eral, the polarity of virtual signals in lead II coincides with
the expected direction of the P-wave, meaning that lead II
is positive during sinus rhythm and negative during pac-
ing from the coronary sinus. P-waves computed based on
ECGI LAT maps show a reduced P-wave duration as seen
in the non-invasive LAT map. P-waves computed based on
EAMS LAT maps have a similar duration to the measured
P-wave on the body surface.
Table 1. Root-mean-square error (RMSE) and correlation
between measured P-wave and simulated P-wave. Values
are presented as mean and standard deviation across all 9
leads.

Patient LAT data RMSE (mV) Correlation
A ECGI 0.26 ± 0.11 0.69 ± 0.34

EAMS 0.38 ± 0.31 0.71 ± 0.26
B ECGI 0.21 ± 0.09 0.71 ± 0.18

EAMS 0.14 ± 0.05 0.72 ± 0.18
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4. Discussion

The aim of this work was to compare the differences in
computing P-waves derived from invasive EAMS and non-
invasive ECGI LAT maps. For both patients, ECGI LAT
maps had a total activation time shorter than the total dura-
tion of the surface P-wave, therefore the P-wave duration
of synthetic signals was also shortened. This can be ex-
plained because the slew rate of P-waves is usually slower
than the one of the IEGM. In addition, noisy recordings
and baseline fluctuations can also affect the ECGI LAT
activation threshold. Another cause that may explain the
reduction of the ECGI P-wave duration is the loss of infor-
mation in the septum, which causes the right atrium and
left atrium to be activated almost simultaneously.

We assigned the same activation in the endocardial and
epicardial layers, this means that the activation was mod-
eled as transmurally homogeneous [16]. Future work
could examine the influence of incorporating transmural
conduction delay or fibrosis information to personalize
our bilayer model. In addition, the impact of the chosen
clinical data on the arrhythmia vulnerability of the model
can be further tested by using established pacing proto-
cols [17].

We computed P-waves from clinically measured inva-
sive and non-invasive LAT maps and showed that the se-
lection of input data affects the activation pattern and that
the differences between ECGI and EAMS LAT maps are
also reflected in the computed P-wave on the body surface.
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