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Abstract 

Background: The discharge of patients from hospital 

care is regulated by guidelines. Still, readmission of heart 

failure (HF) patients is a common issue, and several 

calculators have been published to predict it. 

Aims: We elaborate on how the prediction performance 

decreases when features become missing. We also 

elaborate on which features should a user include every 

time to reach acceptable prediction performance. 

Method: We prepared a balanced dataset from HF 

patients in the MIMIC-III database (N=2,204) with 16 

features. Using training data (80%) in a four-fold cross-

validation manner, we evaluated all feature combinations 

(N=216-1) and found the optimal feature set for the logistic 

regression model. We also evaluated feature presence in 

top-performing models (N=655) and identified mandatory 

features. Finally, we trained the resultant model using all 

training data and evaluated the effect of missing features 

(N=28 combinations) using separate test data (20%).  

Results: We identified three mandatory features (age, 

blood urea nitrogen, and systolic blood pressure) and eight 

optional. This led to a resultant model with eleven features. 

The hazard ratio (HR) using test data showed a value of 

2.08 (95%CI 1.66-2.61) when all eleven features were 

present. It also showed an HR of 1.73 (95%CI 1.39-2.17) 

when only three mandatory features were present, and 

others were missing (i.e., replaced by zeros). 

 

 

1. Introduction 

Predicting readmission in heart failure patients can be 

solved using machine learning methods implemented as a 

web service. In this paper, we elaborated on the optimal 

implementation strategy if the user is allowed to leave 

some feature input fields unused: should we use a single 

model and the missing features strategy or specifically 

trained reduced models? How these strategies affect 

prediction results? And could we identify mandatory 

features, which shall be entered every time by the user? 

 

 

2. Data 

We extracted 2,204 records from MIMIC-III 

database[1] accessed via PhysioNet[2]. Each record was 

described by manually selected 16 features. The feature set 

consists of demographic features (gender, age), laboratory 

features (creatinine, sodium, blood urea nitrogen - BUN, 

potassium, glucose, hematocrit, magnesium, phosphate, 

chloride), and features describing rhythm (systolic blood 

pressure - SBP, diastolic blood pressure - DBP, heart rate 

- HR, and respiratory rate - RR). All features were acquired 

as a mean from the last 24 hours before discharge 

(excepting laboratory values). Each record was 

accompanied by follow-up (up to 3 years) and event type 

(readmission or all-cause death). We used patient state in 

one month after discharge from the intensive care unit as 

the output (balanced) for training models.  

 

3. Method 

Dataset (Fig.1A) is split into training and testing part 

(Fig.1B). Training part is used for feature exploration and 

selection (Fig.1C). To minimize a risk of overfitting, 

feature exploration and selection is done in four-fold cross-

validation (CV). For each CV iteration, we standardized 

data and built logistic regression model for all features. 

Next, we iterated over all feature combinations (N = 216-1 

= 65,535). For each combination step, specific features 

were replaced by zero and tested using data from the 

resting fold.  

Therefore, we obtained four F1 scores for each of 

65,535 feature sets. Based on mean F1 and its standard 

deviation, we manually selected optimal feature set 

(Fig.1E). Based on feature presence in 1% of top 

performing models, we also identified features which 

should be treated as “substantial” (Fig.1F; also Fig.2); rest 

of features was treated as “optional”. 

Computing in Cardiology 2023; Vol 50 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2023.265



 
Figure 1. Method flowchart. Data(A) are split into training 

and testing part (B). Testing part is used for feature effect 

exploration (C), consisting of cross-validation evaluation 

(D) of all feature combinations. Final feature set is 

identified (E) as well as substantial features(F). Final 

model is trained (G) and the effect of missing features is 

evaluated (H). 

Next, we trained the final model using all training data 

(standardized) and evaluated its performance on all 

combinations of missing optional features (mandatory 

features were present every time). We also trained reduced 

models from respective feature sets for later comparison.  

The method was implemented in the Python 3.10[3] 

supported with Pandas[4], scikit-learn[5], and 

matplotlib[6] packages. We used Wilcoxon non-

parametric pair test to evaluate differences between 

approach with reduced models and approach using missing 

values strategy from scikit-learn Python package[5]. 

Hazard ratio including confidence intervals (CI) was 

evaluated using GraphPad Prism 9.5.1 software (GraphPad 

Software, LLC, MA, USA). 

 

3. Results and Discussion 

3.1. Feature exploration and selection 

Figure 2 shows 1% (655) of the best performing models; 

reported F1 score was computed as mean from 4-fold cross 

validation. It shows that age, BUN, and SBP should be 

considered mandatory since they are present in all of these 

best models (Fig2., blue-highlighted features). We also 

manually removed five features due to linear links or 

expected inaccessibility in our future project application 

(Fig2, gray-highlighted features). 

A different point of view on the same results is shown 

in Figure 3, telling how often each feature shares a model 

with the other one; it also reflects linear relationship.  

 
Figure 2. Features in 1% top performing models (N=655). Models are ordered by F1 performance (X-axis); feature presence 

is highlighted in dark blue; otherwise, the feature was replaced by zero (light yellow). Feature names in gray signalize 

those not selected for the final model. Feature labels in black refer to “substantial” features, light blue highlights 

“mandatory” features, and feature labels in grey point to features removed from the final (“full”) feature set.  
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3.2. Final model evaluation 

Model variants consisting of three mandatory and eight 

optional features were evaluated using test data (N=401). 

We received F1 score of 0.681, and 0.629 when all features 

are present (NF=11), and all optional features were missing 

(NF=3), respectively. Tab.1 shows final model features. 

 

Table 1. Features of the final logistic regression model. 

The Mandatory features are highlighted.  

 

Feature Coefficient 

Age 0.353 

Blood urea nitrogen 0.421 

Potassium -0.115 

Glucose 0.167 

Phosphate 0.044 

Chloride 0.228 

Systolic blood pressure  -0.418 

Diastolic blood pressure -0.014 

Heart rate 0.257 

Respiratory rate 0.065 

Oxygen saturation -0.404 

 

3.3. Importance of optional features 

We evaluated performance by presence of optional 

features in models (Fig.4). Chloride or glucose level, for 

example, is present in better performing combinations. 

 

 
Figure 4. Performance (test set) of models if specific 

features are present (NF>=4). The perf. of mandatory 

feature set (NF=3) is red; the full set (NF=11) is black. 

  

 
Figure 3. Features presence and coexistence in 0.1% (N=65) of the best performing models. Blue tone signalizes that a 

specific feature pair form models often while brown tone signalizes the opposite (likely in correlated features). Feature 

labels in black refer to “substantial” features, light blue highlights “mandatory” features, and feature labels in grey point 

to features removed from the final (“full”) feature set. 
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3.4. Comparison of using missing values 

and reduced models 

Contrary to our expectations, models trained for specific 

feature combinations did not show generally better 

performance than the strategy with missing values. 

Furthermore, Fig. 5 shows that scores for reduced models 

are significantly lower (p<0.0001) than scores for the 

missing value strategy.  

 

 
 

Figure 5. Performance comparison (F1-score) of using one 

model and missing values (left) and specifically trained 

reduced models (right). It also shows performance for the 

full feature set scenario (black, NF=11). Performance for 

the mandatory feature set (NF=3) in model with missing 

values is red; performance for mandatory feature set for 

reduced model is gray. 

 

3.5. Performance in follow-up 

Since data in MIMIC-III are accompanied with follow-

up information, we evaluated dichotomization ability 

(Fig.6) of the proposed models in the full and minimal 

configuration. These two feature sets lead to 

dichotomizations with hazard ratios of 2.08 (95%CI 1.66-

2.61) and 1.73 (95%CI 1.39-2.17), respectively.  

 
Figure 6. Data dichotomization by the final model when all 

features are present (black, NF=11) and when only 

mandatory features are present (red, NF=3). 

 

4  Conclusion 

We elaborated on optimal solution for web service 

estimating readmission in case the user does not include 

complete feature set in a user interface. We found that in 

case of logistic regression model and a given feature set, 

more efficient solution is to use a single logistic regression 

model and treat other features as missing instead of 

training specifically reduced models. For our specific case, 

we identified three features as mandatory and evaluated 

how missing feature affect hazard ratio in a three-years 

follow up. 
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