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Abstract

This work presents our team’s (SignalSavants) winning
contribution to the 2024 George B. Moody PhysioNet
Challenge. The Challenge had two goals: reconstruct
ECG signals from printouts and classify them for cardiac
diseases. Our focus was the first task. Despite many ECGs
being digitally recorded today, paper ECGs remain com-
mon throughout the world. Digitising them could help
build more diverse datasets and enable automated anal-
yses. However, the presence of varying recording stan-
dards and poor image quality requires a data-centric ap-
proach for developing robust models that can generalise
effectively. Our approach combines the creation of a di-
verse training set, Hough transform to rotate images, a U-
Net based segmentation model to identify individual sig-
nals, and mask vectorisation to reconstruct the signals.
We assessed the performance of our models using the 10-
fold stratified cross-validation (CV) split of 21,799 record-
ings proposed by the PTB-XL dataset. On the digitisation
task, our model achieved an average CV signal-to-noise
ratio of 17.02 and an official Challenge score of 12.15
on the hidden set, securing first place in the competition.
Our study shows the challenges of building robust, gen-
eralisable, digitisation approaches. Such models require
large amounts of resources (data, time, and computational
power) but have great potential in diversifying the data
available.

1. Introduction

Cardiovascular diseases remain the leading cause of
death globally [1], with electrocardiograms (ECGs) being
essential for diagnosis and monitoring. Despite the rise
of digital ECG devices, many ECGs are still recorded on
paper, particularly in resource-limited settings [2]. Digi-
tising these recordings could enhance datasets with greater
demographic and temporal diversity, but the task is compli-
cated by varying recording standards and image qualities.

Although digitisation efforts have advanced, they often

focus on a narrow set of images, leading to models that
may not generalise well across different populations and
recording conditions. The 2024 George B. Moody Phys-
ioNet Challenge [2] addresses this gap by calling for robust
algorithms to reconstruct ECG signals from printouts.

The 2024 Challenge included two tasks: recovering
ECG signals from printouts and predicting cardiac diseases
from these signals. Our team, SignalSavants, concentrated
on the first task, with the goal of creating a versatile ap-
proach that can be trained and tested on diverse image
sources by combining traditional image processing with
deep learning techniques. We implemented an adaptable
pipeline that includes image rotation using the Hough line
transform, signal segmentation using deep learning, and
mask vectorisation. We rigorously validated our models
using cross-validation splits of 21,799 recordings from the
PTB-XL dataset [3, 4], while creating multiple image ver-
sions for each signal to ensure robustness and reliability.

2. Methodology

2.1. Data

The PTB-XL dataset [3,5] contains 21,799 12-lead ECG
recordings from 18,869 patients. The data was collected
from October 1989 to June 1996 and publicly released
in 2019. For each of the recordings, we created at least
four images using randomly applied augmentation options
from the ecg-image-kit [6, 7]. We used a maximum
rotation of 30 degrees and default settings for the other
augmentation options. Figure 1 provides examples. Ta-
ble 2 describes the randomly used augmentation options.
We assumed the following standards across images, which
we discuss further below: the same signal order, the same
relative signal position, the same grid scale and the same
amount of full-length signals.

2.2. Architecture

Our approach consisted of three major steps: image ro-
tation, segmenting the image into individual signals, and

Computing in Cardiology 2024; Vol 51 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2024.097



(a) (b)

(c) (d)

Figure 1. Four example images of signal 20999. (a) ro-
tated by one degree, (b) rotated by two degrees with wrin-
kles and shadows, (c) rotated by three degrees with wrin-
kles and shadows, (d) not rotated with wrinkles and shad-
ows.

vectorising the segmented pixels. Figure 2 is a schematic
diagram outlining this approach.
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Figure 2. A schematic diagram of our model architecture.
Blue: Data, Yellow: Rule-based engineering, Green: Deep
learning.

Rotation. We rotated the ECG images to standard-
ise the subsequent tasks. To achieve this, we used
the HoughLines() method from the opencv (cv2)
Python package. This method detects straight lines in an
image by mapping edge points onto a polar coordinate sys-
tem and finding intersections that indicate the presence of
a line. We applied filters to these detected lines, consider-
ing only those within a specific angle range and ensuring
a minimum number of parallel lines. Using the angles of
these filtered lines, we calculated the rotation to align the
ECG waveforms horizontally.

Segmentation. For the segmentation we used nnU-Net

[8], which was developed by the German Cancer Research
Center. nnU-Net automatically configures the image pro-
cessing and network architecture based on the data, using
three types of parameters. First, it uses a set of fixed pa-
rameters (which remain constant due to their robust na-
ture), such as the loss function, primary data augmentation
strategies and learning rate. Second, rule-based parame-
ters are adapted to the dataset using predefined heuristic
rules, adjusting aspects like network topology and batch
size. Finally, empirical parameters are determined through
trial-and-error, refining elements like the best U-net con-
figuration for the dataset and the postprocessing strategy.

Figure 3 shows a segmentation example. To create the
masks we used two sets of pixels. The ones provided by the
ecg-image-kit (called ‘sparse’) and an interpolated
version that increased the pixel density (called ‘dense’).
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Vectorisation. In order to convert the mask, which is a ma-
trix of pixel values, into a signal, the average y-position of
the non-zero pixels in each column is used as signal value.
Next, the signal is scaled to the correct amplitude using the
grid size and resolution, which we assume to be constant.
Finally, the starting time of the signal is determined based
on the position of the signal on the ECG. Figure 4 shows
an example of two leads from an ECG and the predicted
signals from vectorising a mask of the signals.

2.3. Scoring

The metric used in the the digitisation task was the
signal-to-noise ratio (SNR) between the true signal y and
the predicted signal ŷ, which can be calculated via

SNR = 10 · log10
∑

i y
2
i∑

i(ŷi − yi)2
. (1)
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Figure 4. Vectorisation example for signal 20999. Left:
original and predicted signal. Right: signal difference.

Letting the prediction be ŷi = 0 for all i provides a surpris-
ingly strong baseline of SNR = 0 for this Challenge. This
is due to the ECG signals having high and narrow peaks.
During the Challenge, an update was released that aligns
predicted and true signals up to a certain threshold along
the x and y-axis [2].

To evaluate our models, we used the 10-fold splits sug-
gested in [3] due to their stratified sampling approach.

3. Results

Table 1 shows the final challenge scores and Table 2 the
results of different models for the digitisation task. Mod-
els M2 and M3, while in theory more advanced, were
more prone to overfitting and needed more training data
to achieve similar performance as M1. In the rotation step,
we achieved a correct rotation prediction on over 99.7% of
the images. Manually investigating a selection of the im-
ages where the rotation failed suggests that failure occurs
when the colour schema and/or the augmentation are so ex-
treme that determining the straight lines becomes very dif-
ficult. Vectorisation sometimes did not capture the peaks
of the signals, as illustrated in Figure 4.

Task Score Rank
Digitization SNR: 12.15 1/16
Classification F-measure: - -

Table 1. Signal-to-noise (SNR) ratio and F-measure of
our team’s model on the hidden data for the digitization
and classification (not participated) tasks, respectively.

In addition to the PTB-XL scans used in the official
ranking, models were evaluated on a variety of additional
image types [9]. Although we still achieved positive scores
(0.51 to 4.93) on both colour and black-and-white scans of
various paper qualities (deteriorated and clean), we scored

negatively (-1.76 to -0.72) on mobile phone photos and
computer screenshots.

4. Discussion

In this study, we combined several common image pro-
cessing approaches, such as the Hough transform for line
detection, U-Nets for segmentation, and interpolation tech-
niques for scaling. This method achieved the highest Chal-
lenge score, surpassing the next best-performing team by
more than double.

However, the leaderboard only shows results for scans
from the PTB-XL dataset, while the Challenge also eval-
uated entries on scans and mobile phone photos of im-
ages of different quality (e.g., clean, stained and deterio-
rated) as well as screenshots of computer monitors. No
team achieved the highest score across all datasets. In
fact, leaderboard performance dropped significantly on the
other datasets (e.g., no team received a positive score for
mobile phone photos of stained papers). Additionally, our
local CV scores on various data augmentations were much
higher than on the hidden sets. This performance gap high-
lights the challenge of achieving robust generalisation and
the need for a training set that closely matches real-world
conditions for reliable digitisation.

Some of our assumptions affected our results. Notably,
all training examples had the signals in the same order and
at the same position. While the segmentation model has
the ability to learn the labels from the labels in the images,
we assume that it simply assumed the same signal position
for each prediction. We tested combining bounding boxes
and optical character recognition (OCR) to be more inde-
pendent of the signal position, but did not achieve robust
results locally. Additionally, we assumed that each image
contains only one full signal, which may not always be the
case. For better generalisation, the segmentation model
must be trained on examples with multiple full signals. We
also assumed constant image resolution and grid scaling.

Our approach to ECG digitisation aligns with the multi-
step approaches commonly reported in the literature [10–
13]. Initially, we applied image pre-processing using the
Hough transform [11, 12]. While many studies relied on
pixel thresholds for segmentation [10–12], our objective
was to improve generalisability by using a deep learning
network (nnU-Net [8]), similar to the approach in [13], fol-
lowed by vectorisation. However, unlike previous work
[13], we applied our model to the entire image without
prior pre-processing (except rotation), such as grid re-
moval or detection of regions of interest. The key con-
tributions of this approach are that a) it achieves much bet-
ter results than other submissions to digitise ECG signals,
and b) it can be easily applied to different data sources,
whereas previous approaches are highly dependent on the
specific style of the images used (e.g., assuming a partic-
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Model Train images Augmentation Mask SNR official SNR CV
M1 20k Headers, calibration, wrinkles, rotation, cropping Sparse 12.15 17.02
M2 45k M1 + handwritten notes, QR-codes, various colours Dense 9.42 12.58
M3 69k + 100 fine Same as M2 Dense 4.20 15.27

Table 2. Digitisation models tested in this work. ‘SNR official’ is the leaderboard performance on the Challenge’s hidden
set. ‘SNR CV’ is the average CV score. The column ‘Augmentation’ describes the randomly applied options from the
ecg-image-kit during image generation. ‘Dense’ means an interpolated set of pixels was used for the masks (see 2.2).
M3 was first trained locally on 69k images and then further fine-tuned on 100 of the hidden Challenge train data.

ular grid colour). As long as the training data mimic the
deployment settings, our approach can be easily adjusted.

Developing methods to digitise images can enhance ma-
chine learning-supported screening systems by improving
training through a wider range of data and helping to ap-
ply the models in more settings. However, making models
robust and generalisable is not trivial. Achieving this re-
quires a data-centric approach and vast resources.
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