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Abstract

ECG recordings are often stored as paper scans, due to
clinical accessibility and tradition. This paper presents a
digitization pipeline for ECG printouts based on line de-
tection to correct for rotation, and a U-net for segmen-
tation. The digitization step is differentiable, so the U-
net can be fine-tuned for any evaluation metric of interest.
The tool achieves a maximum translation-adjusted SNR of
3.047 dB on the George B. Moody PhysioNet Challenge
2024 hidden dataset, placing Ahus AI Lab fourth among
the official entries.

1. Introduction

Cardiovascular disease (CVD) remains the leading
cause of death in the world [1]. Electrocardiogram (ECG)
stands out as one of the most widely used diagnostic tools,
accessible even in severely resource-constrained environ-
ments. In recent decades, computer-assisted analysis has
improved clinicians’ ability to interpret ECG data. This
progress has accelerated dramatically with the advent of
deep learning, unlocking algorithmic ECG classification
accuracy on par with, or even above, human capabilities
[2]. To achieve optimal performance in deep learning, high
quality data is essential for both model training and in-
ference. For ECGs, this means ensuring the accuracy of
the recordings and maintaining consistency in the data for-
mat [3]. In this paper, we present an ECG conversion tool
for general use, capable of digitizing printouts from var-
ious manifacturers and ecan layouts, see Figure 1 for an
overview of the methodology.

2. Methods

The proposed digitization tool consists of five modules:
pre-processing, semantic segmentation, signal identifica-
tion, signal conversion (mapping from 2D to 1D), and lead
identification. The pipeline, i.e., the underlying parameter-
ized models, were trained using simulated ECG printouts.

Figure 1. Overview of the effects by each module in the
pipeline. Upper left corner: simulated ECG printout with
artifacts such as rotation, handwritten digits, and redacted
information. Upper right corner: output from the segmen-
tation network. Lower left corner: The segmentation is
thresholded and contiguous regions are separated, shown
with different colors. Lower right corner: All small con-
tiguous regions are removed, leaving the signal of interest
intact.

Specifically, training data sets were generated using open
source ECG Image Kit software [4], together with the pub-
lic PTB-XL dataset containing 12-lead ECG records from
18869 patients [5]. The image generation source code was
modified to output both images and segmentation masks
with a shape of 2200 by 1700 pixels. The latter was gener-
ated to accommodate the training procedure of the seman-
tic segmentation network.

2.1. Preprocessing

The initial preprocessing step aims to produce high-
quality inputs for the segmentation network. Input im-
ages are converted from 8-bit RGB format to floating
point grayscale, inverted, and finally Min-Max normal-
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ized. These transformations result in images with mean
pixel intensity close to zero, suitable for neural networks.

Real-world images and scans may have rotation in rela-
tion to the camera. To correct this, the grid lines on each
ECG’s gridded paper can be used for alignment. To de-
tect grid lines, Canny edge detection is applied, followed
by the Hough Line Transform. The result is a set of n line
segments in various directions. As the grid is the predom-
inant source of straight lines, most but not all lines can be
assumed to belong to the grid. To reduce the effect of false
positives, 20% of the detected lines, specifically those with
angles furthest from the mean, are discarded. Denoting the
number of lines kept n and the angle of each line as θi, the
average rotation Θ of the image is calculated as
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After estimating Θ for each image, they are aligned by ro-
tating with −Θ radians.

The extracted line segments can also be utilized to iden-
tify the vanishing points in the image, which can then be
used to estimate and correct the camera pose. Camera pose
estimation was not performed in the official submission
to the 2024 PhysioNet Challenge but is showcased in the
qualitative evaluation.2

2.2. Semantic segmentation

After preprocessing, semantic segmentation is applied
to identify components of the ECG print; specifically (1)
ECG signal, (2) 1mV control signal (3) other printed ele-
ments such as lead separators, text and redacted informa-
tion, and (4) background. While the ECG signal is the only
element of interest, introducing classes for other printed
elements is done to improve segmentation results for the
ECG class.

Given the necessity of using local context to distinguish
between, e.g. control signal and ECG signal, a U-Net
model is employed. The model uses cross-entropy loss
without assigning different weights to the classes. The net-
work output logits, which after applying the softmax func-
tion in the channel dimension can be interpreted as proba-
bilities of pixels belonging to the four classes.

The output of the segmentation network runs through a
postprocessing procedure, particularly to increase robust-
ness against novel inputs. A Gaussian smoothing filter
with kernel size σ = 3 pixels and binarized filter using
a threshold value of p = 0.001 is applied to the ECG out-
put channel. The filtering prevents smaller isolated islands
of pixels with high probabilities of being ECG signals to
build up, as these can be considered false positives.

2.3. Identification of signal start- and end-
points

To map the segmented ECG signal into a 1D time se-
ries, it is necessary to identify the start- and endpoints of
the plotted ECG signals, carried out in two steps. First,
start- and end-points are identified by projection onto the
horizontal axis of the pixel map, as rotations are removed
in the pre-processing, and solving the following optimiza-
tion problem:

min
x1,x2

∥f(x)− h · (H(x− x1)− H(x− x2))∥1 (1)

where H denotes the Heaviside step function, f(x) the tar-
get signal as a function of column index and h the median
of the target signal. The problem can be illustrated most
intuitively by an example, as depicted in Figure 2.

Target
Fitted box

Figure 2. Box signal fitted to the projected pixel map in
order to identify start and endpoints of the ECG channels.

Solving the optimization problem yields a fitted box to
the respective ECG-channel. However, since the segmen-
tation network is not specifically trained to find the true
edges of a signal, it might fail in the presence of artefacts
or obstructions in the image, e.g. when the start- or end-
point of a signal overlaps with the control signal. These
scenarios could result in slight translations of the digitized
signal, which could severely affect similarity metrics sen-
sitive to lag, such as the signal-to-noise ratio (SNR). The
box fitting estimates are therefore refined using a fully con-
volutional edge finding network, trained to detect the start
and endpoints within each box, inspired by [6].

The networks aim is to output a tensor ρ the same shape
as the input image, with local maxima at coordinates cor-
responding to signal start and endpoints. To illustrate the
mechanics of the procedure, let S denote the sigmoid func-
tion, (x, y) the position of a start or end point in image
coordinates and ϵ = 0.0001 be a constant. During train-
ing, the network is trained with image patches with vary-
ing shape (W,H). The minimization objective is the sum
of two functions:

L1(ρ) =

H,W∑
i,j=1

S(ρij)
√

(j − x)2 + (i− y)2 (2)
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and

L2(ρ) =
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(3)
where w is a deterministic function of ρ,

wij =
ϵ+ S(ρij)

HWϵ+
∑H,W

i,j=1 S(ρij)
. (4)

Note that ϵ in Equation (4) effectively defines a base-
line weight for all pixels, compelling the network to pro-
duce higher values in the vicinity of (x, y) to minimize L2.
Meanwhile, L1 encourages lower values for pixels farther
from (x, y).

During inference, ρ is normalized to wij = S(ρij) and
detection is performed by choosing a threshold value for w.
The location of start- and endpoints is found by calculating
the center of mass of each island. Notably, the network can
take input images of any size and find any number of start
and endpoints. However, to save computational resources,
crops around the estimated start and end points were used,
as illustrated in Figure 3

Cropped input image

Prediction

Output ρ

Figure 3. The edge finding network returns a weightmap;
the local center of mass is used to predict the position of
start- and endpoints of ECG signals with high accuracy.

2.4. Signal Conversion

After identifying the start and endpoints of the ECG sig-
nals, the full image is cropped and resampled along the
horizontal axis. Resampling is performed to match the tar-
get sample rate of the digitized signal, e.g., a desired sam-
ple rate of 100Hz results in an image with shape (1000, H)
for a 10 second signal. Transformation of the 2D probabil-
ity tensor to the 1D time series is carried out in parallel for
each column and lead, identified via contiguous regions as
depicted in Figure 1. For a given column c ∈ RH, the mV
value is calculated as softmax(log( c

1−c )) ·v where vi = αi

and α is the conversion factor determined via the printer
settings, i.e. the ratio between mm/mV and mm/s, and i
is the vertical pixel coordinate. The conversion process is
depicted in Figure 4.

Since the full process is now differentiable, the pipeline
can be fine-tuned end-to-end for the desired metric, e.g.
SNR. For the challenge experiment, fine-tuning is used to
maximize both SNR and segmentation cross-entropy, re-
sulting in a more quantized signal, see Figure 5.

Figure 5. To the left, output of segmentation network
trained only with cross-entropy. To the right, segmentation
network trained to minimize both cross-entropy and neg-
ative SNR. Note that the fine-tuned network gives a more
concentrated output.

2.5. Lead identification

Lead identification is carried out assuming a 3-by-4
channel layout, where each lead is plotted for 2.5 s, with
an arbitrary number of rythm leads. Identification of the
short leads is done via relative geometric location, and ry-
thm leads are identified by calculating the corresponding
correlation of each 2.5 s segment.

3. Experiments

Experiments were carried out using the simulated
ECG printout dataset and PyTorch. The U-net model
was implemented with a standard block structure of
2×[Conv(3x3, k), ReLU, BatchNorm2d]where
k is the number of output channels, chosen to be 1,
16, 32, 54, 128, 256 in the downsampling with
MaxPool2d(2,2) between each block. The upsam-
pling used the mirrored structure, replacing the max pool-
ing operation with bilinear upsampling.

The edge finding network was implemented as a
series of 11 blocks of [Conv(3x3, 64), ReLU,
BatchNorm2d] followed by Conv(1x1, 1).

The networks were trained using AdamW, learning rate
0.0001, batch size 1 and weight decay 0.01. A low batch
size was used because of the high resolution of the input
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Figure 4. The weightmap is multiplied with the linearly increasing tensor to produce the multivariate 1D time series.

images. The edge finding network was initially trained on
(128, 128) sized crops from the simulated images, before
fine-tuning both networks jointly for 300 batches.

Using batch loss, convergence was achieved already be-
fore one epoch, or 4 hours of training on a Tesla T4 GPU.
The edge finding pre-training converged to subpixel ac-
curacy after being trained with 2,000 images, i.e. 16,000
(128, 128) crops. The official challenge [7] score obtained
by evaluation on [8] is presented in Table 1.

Table 1. Signal-to-noise (SNR) ratio of our team’s model
on the hidden data for the digitization task.

Task Score Rank
Digitization SNR: 3.047 4/16

4. Discussion and Conclusions

While testing the tool on held-out subset of the training
set it performs better than on the hidden challenge dataset,
indicating limitiations in generalization capabilities. To
demonstrate this, inference is made on the held out sub-
set1 and a collection of real-world images2. In the former,
a SNR of 10.509 dB was obtained, the latter gives indica-
tions on where the method fails. As suspected, the tool
fails to assign the correct identity to a channel, when non-
supported layouts are used. When the paper ECG is not
flat, the dewarping step might fail.

Summa summarum, this paper presented a tool to digi-
tize paper ECGs, showing proficient performance for the
task. To further improve accuracy, better channel iden-
tification, dewarping and handling of overlapping signals
might be necessary.

1https://github.com/eliasstenhede/ECG-DUaL-Quantitative-Test/
2https://github.com/eliasstenhede/ECG-DUaL-Qualitative-Test/
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