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Abstract 

Atrial Fibrillation (AF) is a prevalent cardiac 

arrythmia. AF poses significant challenges to patient well-

being and longevity as current treatments are not effective 

and personalized as desired. While cardiac modelling has 

advanced considerably, the translation of these models 

into personalized therapies remains challenging. This 

paper proposes a framework leveraging Digital Twins 

(DTs) based on non-invasive electrocardiographic 

imaging (ECGI) data to enhance the planning and efficacy 

of ablation procedures.  

The framework was validated against benchmark 

simulations across diverse AF scenarios utilizing a 

cellular automata model. DTs are personalized using 

ECGI-derived metrics, as Dominant Frequency (DF) 

maps, to modify tissue properties and simulate arrhythmia 

dynamics. The DF comparison between benchmark 

simulations and DTs shows a MAE of 1.15 Hz. 

Additionally, the ablation strategy effective in stopping 

arrhythmia in benchmark simulations also works in DTs. 

The framework efficiently generates DTs that replicate 

benchmark dynamics using non-invasive data, with DF 

maps playing a crucial role in DT personalization. With its 

reliance on non-invasive data and efficient computational 

methods, the framework shows potential for real-time 

clinical use, assisting personalized AF ablation strategies. 

 

 

1. Introduction 

Atrial Fibrillation (AF) is the most common type of 

arrythmia in the world. It demeanes the quality of life and 

reduces the life expectancy of the patients. Moreover, 

current treatments demand high budgets and are not as 

effective and personalized as desired[1]. Success rates of 

catheter ablation therapy including several procedures are 

in the range 50%-80%[2]. 

In recent decades, significant advancements have been 

made in cardiac modeling, leading to the proposal of 

various models to elucidate cardiac dynamics. This 

progress has deepened our comprehension of cardiac 

arrhythmias and their treatment modalities. Over the past 

years, the emergence of cardiac Digital Twins (DTs) has 

enabled the creation of virtual replicas of patients' hearts 

based on their individual data. These DTs hold promise for 

tailoring treatments to individual patients, potentially 

enhancing the efficacy of ablation therapies. However, 

existing frameworks described in the literature may be 

limited in the degree of personalization, rely on invasive 

data, or necessitate prolonged simulation times, posing 

challenges for real-time clinical application for 

personalizing treatments on an individual patient basis[3]. 

Electrocardiographic imaging (ECGI) is a non-invasive 

technique that allows to recover cardiac electrical activity 

from Body Surface Potential Mapping(BSPM)[4]. ECGI 

has shown to retain relevant information about the spectral 

and rotational activity of AF patients[5],[6]. 

This paper presents a framework to develop DTs based 

on non-invasive data ECGI to aid planning of ablation 

procedures. We validate the proposed framework against 

benchmark mathematical models comparing the original 

benchmark models against the final DTs. We will 

propagate the models to the torso, do ECGI and obtain the 

DT based on the ECGI solution. We evaluate our 

framework by comparing metrics derived from both 

models, and testing if the same type of ablation strategy 

can stop the arrythmia in both scenarios. 

 

2. Methods 

2.1. Benchmark cardiac simulations 

 
AF simulations were obtained for benchmarking over a 

volumetric mesh with 59,208 nodes using a cellular 

automata (CA) model [7]. This benchmark set included 
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simulations where diverse regions of the tissue were 

modified to have shorter Action Potential Duration (APD) 

and lower diffusion coefficients which help to sustain the 

arrhythmias. Moreover, an eikonal model [8] with rotors 

within those areas was used for the initialization of the 

simulation. Each basal AF simulation lasted over 10 

seconds.  

Over the simulations, Dominant Frequencies (DFs) 

using P-welch algorithm were measured[5]. Also, 

histograms of rotational activity lasting greater than one 

rotation[6] were computed. 

For each simulation, the ablation strategy which stopped 

the AF was found by proving diverse classical ablation 

therapies till one finalised the arrythmia. For this, the 

ablation was introduced in the model by disconnecting the 

nodes related to the ablation and then the simulation was 

continued for 5 more seconds. 

Electrograms (EGMs) were computed at the surface of 

heart using a shell of 4.000 nodes. The EGMs were then 

propagated to a torso with 678 nodes solving the forward 

problem using the Boundary Element Method (BEM) [9]. 

Lastly, gaussian noise with a signal-to-noise ratio of 10 dB 

was added to the surface signal. 

 

2.2 Digital Twin personalization 

framework 
 

The personalization framework to obtain the DT 

consisted of the following stages: ECGI calculation, DT 

personalization, DT simulation and evaluation. The same 

CA mathematical model used to obtain the benchmark 

simulations was used for the DT ones. 

For the ECGI calculation, the forward problem torso 

and heart shell were used. The inverse problem was solved 

using zero order Tikhonov regularization and L-curve 

optimization[9].  

For the personalization of the DT, derivatives obtained 

from the ECGI solution were obtained. DF maps were 

computed in the same way as for the benchmark 

simulations. Those maps were used to determine the APD 

desired in the model. We based this on the inversely 

proportional relationship between the DF and the basic 

cycle length of activation. The basic cycle length consists 

of the sum of two terms: the APD and the diastolic interval 

(DI). Thus, high DF shall be related with short APD. The 

APDs in the used models are determined by APD curves. 

These curves are defined in the following way: 

𝐴𝑃𝐷 =  𝐴𝐴𝑃𝐷 ∗ (1 − 𝐵𝐴𝑃𝐷 ∗ 𝑒−𝜏𝐴𝑃𝐷∗𝐷𝐼) 

We changed the 𝐴𝐴𝑃𝐷   which determines the plateau of 

the curve; thus, the cell could activate at the rate seen in 

the DF maps. Moreover, DF maps were also used to 

modify the diffusion coefficient of the tissue to ensure that 

the tissue could activate at the expected rate. 

For the model initialization, a phase Hilbert transform 

of ECGI signal was used. To choose the time instant, we 

computed the histogram of rotors of the ECGI signal. We 

chose a time instant where a rotor was found the nearby the 

centroid of the high DF area of the ECGI solution. Then 

phase signal of that time instant was converted into voltage 

for the model initialization. 

Once we have the APD curves, the diffusion 

coefficients, and the initial conditions of the models over 

the heart shell, these are each interpolated to the complete 

heart volume. Then, the DT simulation was run for 10 

seconds duration as for the original benchmark 

simulations.  

 

2.3 Digital Twin evaluation 

 
To evaluate the DTs, DF maps and histogram of rotor. 

Regarding the DF maps, the correlation coefficient (CC), 

mean absolute error (MAE) and root-mean-square error 

(RMSE) were calculated. The CC was also measured for 

the High DF regions (HDF). HDF was defined as the areas 

with a DF above the 85-percentile interval.  

Regarding the histogram of rotors, the area over the 99.9 

percentile of the map was obtained. Then, the Euclidian 

distance between the centroid of the high rotational area of 

Figure 1. The proposed personalization framework. The benchmark simulation is propagated to the torso and added gaussian noise. 

Then the inverse problem is computed to recover the heart signal. From these signals, derivatives as Dominant Frequencies (DFs) and 

the phase signal transform are obtained to personalize the diffusion coefficients, APD curves and establish the initial conditions of the 

Digital Twin (DT). Then, the DT is obtained, and DFs and histogram of rotors are compared with the benchmark simulation. Lastly, the 

ablation strategy that stopped that arrhythmia in the benchmark model is also tried in the DT. 
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the benchmark simulation and the one of the DT was 

found. 

Lastly, the same ablation strategy which stopped the 

arrhythmia in the original benchmark model was 

introduced in the DT and the outcome was simulated. After 

five seconds, the successfulness of the ablation was 

checked. 

 

3. Results 

3.1 Benchmark cardiac simulations 
 

The framework was evaluated through three benchmark 

simulations. For the first set-up, the region driving AF was 

in the left pulmonary veins and AF terminated after 

pulmonary vein isolation (PVI). For the second set-up, the 

activity driving AF was on the posterior wall and AF 

terminated after ablation of the roof + PVI. For the third 

set-up, the left atrial appendage (LAA) was the leading 

region and AF terminated after the ablation of LAA. 

The simulations were run using a 38 CPU cores 

(Intel(R) Xeon(R) W-3375 CPU @ 2.50GHz). For a 10 

seconds simulation, 15 seconds of computational time 

were required without the use of the GPU. 

  

3.2 Digital Twin evaluation 
 

For the first case which is shown in figure 2, the 

benchmark DFs and the DT ones had CC of 0.74, a MAE 

of 0.96 Hz and RMSE of 1.24 Hz. The HDFs presented a 

CC of 0.73. The Euclidian distance between the centroid 

of high rotational areas of the original simulation and the 

DT was 1.32 cm. 

In the second case, the original DFs and the DT ones 

had CC of 0.75, a MAE of 1.08 Hz and RMSE of 1.36 Hz. 

The HDFs showed a CC of 0.67. The Euclidian distance 

between the centroid of the rotational areas was 2.31 cm. 

The last case presented a CC between the DFs of 0.54, 

a MAE of 1.41 Hz and RMSE of 1.64 Hz. Regarding the 

HDFs regions, they had a CC of 0.62. The Euclidian 

distance between the centroid of the rotational areas was 

2.14 cm. 

In summary for the three cases, the DFs of the 

benchmark simulation and the DT had a mean CC of 0.68 

(+/- 0.12), a mean MAE of 1.15 (+/-0.23) Hz and a mean 

RMSE of 1.41 (+/-0.21) Hz. The mean CC of the HDFs 

areas was 0.67 (+/- 0.06) and the mean distance between 

high rotational areas was 1.92 (+/- 0.53) cm. 

In all set-ups, the ablation strategy which stopped the 

arrhythmia in the benchmark simulation also terminated 

the arrhythmia in the derived DT. Particularly, the impact 

of ablation in the first case is illustrated in Figure 3. After 

PVI ablation, the arrhythmia ceased both in the benchmark 

simulation and in the DT. 

 

 
Figure 3. Summary of the propagation for the first case. In 

panel A, the voltage maps at 4, 9 and 14 seconds are illustrated 

for the benchmark simulation (BS) and the Digital Twin (DT). In 

panel B, two EGMs of the benchmark simulation and DT. The 

red line indicates the moment when the ablation was introduced. 

LPV: left pulmonary vein. RPV: right pulmonary vein. 

 

4. Discussion 

A framework for constructing DT based on ECGI data 

during AF was presented in this paper. For this a set of CA 

simulations were used as benchmark and propagated to the 

torso. Then inverse problem was solved, and metrics 

Figure 2. Summary of the results obtained for the first case. The Dominant Frequencies (DFs) maps and the histogram of rotors are 

illustrated for the benchmark simulation, the ECGI solution and the Digital Twin (DT).  
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derived from the ECGI solution were used for its 

personalization.  

The presented framework utilises DF maps to modify 

the tissue properties. Our results showed that DF maps 

contain relevant information to obtain DTs with similar 

dynamics to the benchmark simulations. Further work can 

be done to expand the tunning of the 𝐴𝐴𝑃𝐷 to the rest of the 

parameters of the APD curve of the model. In the future, 

other ECGI measurable variables including conduction 

velocities or rotational activities can be incorporated into 

the framework to further expand the personalization.  

Previous AF personalization frameworks either require 

invasive data or need long simulation times [3], [10]. Our 

framework only requires non-invasive data as the ECGI 

solution. Moreover, the used CA model allows us to obtain 

a 10 second simulation in just 15 seconds and without the 

need of a GPU.  

Future efforts will focus on extending this framework to 

clinical applications with patients, facilitating real-time DT 

generation without invasive data. This advancement holds 

promise for tailoring ablation treatments to individual 

patients, enhancing treatment personalization. 

 

5. Conclusions 

The presented framework generates DT with similar 

dynamics to the benchmark simulations without the need 

of long simulation times or invasive data. This paves the 

way for obtaining DT during AF which can be used during 

real-time clinical practice to personalize the treatment of 

the individual patients.  
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