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Abstract

Drug-induced Torsade de pointes (TdP) is a critical
arrhythmia that can lead to sudden cardiac death. Be-
sides ionic current blockades, in-silico electrophysiologi-
cal and mechanical biomarkers can provide mechanistic
proarrhythmic information for TdP-risk assessment, and
specific torsadogenic indices have been developed for that
purpose, yet, determining the causal relationships between
these variables is challenging. This study aims to em-
ploy a novel Multi-Channel Causal Variational Autoen-
coder (MC?VAE), to identify causal relationships between
ionic current blockades, electrophysiological biomarkers,
and torsadogenic indices, considered as three distinct
sources of information (channels) for drug-induced TdP
risk. Our approach interestingly suggests the existence of
latent causal relationships between the considered chan-
nels, allowing for a better reconstruction of all observed
features. Further, MC2VAE can quantify the strengths of
the identified causal relationships, opening up a viable av-
enue for actionable interventions on the established causal
graph. Finally, we consider the downstream task of drug
classification for TdP risk on the latent channels and show
a clear improvement in classification performances when
combining the three considered channels. Overall, our
results provide a strong rationale for causally combining
multi-channels biomarkers in TdP-risk characterization.

1. Introduction

Some molecules can interfere with cardiac electrophys-
iology and induce the life-threatening arrhythmia known
as Torsade de Pointes (TdP): therefore, pro-arrhythmia as-
sessment is needed in the preclinical stages of drug de-
velopment. The limited accuracy of strategies focusing
on hERG block and QT prolongation led to the Compre-
hensive In Vitro Proarrhythmia Assay (CiPA) initiative,
which promotes in silico simulations to improve predic-
tions by providing a mechanistic classification [1]. Elec-
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trophysiological models considering the blockage of seven
ionic currents, instead of only the main repolarizing cur-
rent [, are used to compute biomarkers able to better
identify torsadogenic drugs. Moreover, detailed and com-
plex biophysical models have been developed to better rep-
resent myocyte activity, including excitation-contraction
coupling, the process by which changes in membrane po-
tential trigger calcium release to activate myofilaments.
Therefore, drug effects on ionic currents can be trans-
lated from excitation to contraction. So far, multiple in-
dices have been proposed for TdP-risk assessment [2],
most of them based on drug properties and action poten-
tial, and the latest increasing tendency is to combine sev-
eral electrophysiological properties, including Ca-derived
features [3,4]. Besides, instead of striving to find a sin-
gle optimal predictor, the strategy of combining multiple
features and analyzing them with machine learning tools
seems promising [5]. In that sense, the main dilemma is
whether or not we are over-exploiting the model by using
as input many interrelated variables.

Therefore, the challenge lies in effectively combining
the different sources of information (channels) to achieve
a more informative TdP-risk assessment. We hypothesize
that discovering causal relationships between the different
channels could help our understanding of the underlying
mechanisms leading to TdP, and improve its characteriza-
tion. However, the process of analyzing data from dif-
ferent channels is challenging, due to their heterogeneity
and the potential presence of redundant shared informa-
tion. We consider here Variational Autoencoders (VAEs),
Bayesian generative models that encode data into a mean-
ingful lower-dimensional latent space, from which the
original data can be effectively generated [6]. VAEs are
flexible enough to adapt to a variety of data types and struc-
tures and have already shown promising in the context of
multi-channel data analysis [7].

In this work, we propose to use a novel Multi-Channel
Causal Variational Autoencoder [8] to identify latent
causal relationships between ionic current blockades, elec-
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trophysiological biomarkers and torsadogenic indices con-
sidered as three distinct channels. In Sec. 2 we describe
the data and give details about the mathematical formula-
tion of MC2VAE. Sec.3 presents our results, while Sec.4
provides some conclusions and perspectives.

2. Materials and method

2.1. Dataset collection and preprocessing

Electrophysiological cellular simulations with drugs
were performed using a modified version of the human en-
docardial ventricular O’Hara et al. model [9, 10]. A to-
tal of 109 drugs from CredibleMeds (accessed March 9,
2020) with known torsadogenic risk (37 with known, 14
with possible, 13 with conditional, and 45 with no proven
risk) were used in this study. Each drug consists of data
coming from 3 channels, I, F, and T, described below.

: The drug-induced blockade of the seven most important
ionic currents according to the CiPA initiative, computed
using the simple pore block model, at the effective free
therapeutic plasma concentration (EFTPC) [11].

: Ten in-silico electrophysiological biomarkers that con-
sist of direct features from the action potential (APD90,
APDS50, Tri9050, Tri9030, gNet) and from the calcium
transient signals (Casyst, Cadiast, CaTD90, CaTD50),
including a surrogate of the electromechanical window
(Emw = CaTD90-APD90) [5].

: Three in-silico derived features that have been proposed
as torsadogenic indices: 77, the ratio between the con-
centration of a drug that provokes a 10% prolongation of
the APD90 in control conditions and the EFTPC; Ty ¢,
the ratio between the net charge carried by the net current
when exposed to 10 times the EFTPC with respect to the
net charge in control conditions; and Tiang, the ratio be-
tween Tri9030 for a drug concentration of 10 times EFTPC
and triangulation in control conditions [9].

A total of 20 features are observed per drug. To ensure
their compatibility with the model’s assumptions (Sec.
2.2), we applied a power transformation to I and a loga-
rithmic transformation to 7" and F, followed by standard-
ization.

2.2. MC?VAE

The structure of MC2VAE is composed of three main
components: 1) encoding, 2) causal layer, and 3) decoding
(Fig. 1). Each channel is projected into a one-dimensional
latent space through its channel-specific encoder. The ob-
tained latent variables are fed to the causal layer, where a
causal graph is learned to discover latent causal relation-
ships between the channels, hence transformed according
to the learned causal graph. Finally, causal latent vari-
ables pass through their respective channel-specific de-

coder which reconstructs the input data [8]. In the follow-
ing, we briefly outline the formal definition of MC2VAE,
and its optimization. The main code is made publicly avail-
able on GitLab.

2.2.1. Latent structural causal model

We denote by X = {I, E, T} the dataset consisting of
N = 109 drugs, where I denotes the ionic current block-
ade fractions, E the electrophysiological biomarkers and
T the torsadogenic indices. X; := (I;, E;, T;) represents
the dataset of the 7' drug.

We assume independence between the drugs, and hy-
pothesize linear causal relationships across the channel la-
tent variables, z¢ := (¢, 2%-¢ 27¢), and a normal prior
for their respective noise terms, z := (2!, 2z, 27). These
assumptions define a latent structural causal model (SCM):

ZC:A,,];ZC-FZ:(H—A:)_IZ,ZNN(O,H), (1)

where I denotes the identity matrix, and A~ is a weighted
adjacency matrix, to be learned: (A.,)ij provides the
strength of the causal linear relationships of the parent vari-
able 2"¢ to the children variable 27+, i, j in {I, E, T'}.

2.2.2. MC?VAE loss function

The encoder and decoder channel-specific operators are
neural networks parametrized by © := (6,,,) =15, and
® = (¢,,)m=r1,51 respectively. To optimize the pa-
rameters of MC?VAE, we should maximize the marginal
log-likelihood of X, £(X;®,®, Ay) and derive the true
posterior p(z|X) over the latent space. Due to analytical
intractability, we apply variational Bayes and introduce a
tractable posterior ¢(z|X; ®) which approximates p(z|X)
[12]. We get: N
LX;®,0,4y) = Z log [p(X;; @, Ay)]

i=1

> Epngaixio) {log [p(X[2%; @)}
+Ez~q(z\X;@) {IOg [p(ZﬂZi; A’Y)]}
—Dxu (¢(z[X;0)]|p(z)) == €,
where p(X|z¢; ®) is the probability distribution of the
decoder, p(z§|z;; Ay) is the Markov factorization of the
joint distribution of the latent variables according to the
assumed SCM, p(z) is the normal prior of the latent causal
variables (c.f. Eq. (1)), and Dkj, denotes the Kullback-
Leibler divergence. Since we seek for directional cause-
and-effect relationships among causal latent variables, we
enforce the acyclicity of the causal graph, represented by
A.,, through a penalization term inspired by [13].

3. Results

For the experiments presented here, all encoders and de-
coders consist of a single linear layer. MC2VAE learning is
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Figure 1: MC2VAE pipeline for X = {I, E,T}. In step
2) we represent the causal graph learned by our model.

efficiently carried out through stochastic gradient descent
using the Adam optimizer [14]. We consider 1000 epochs
with an initial learning rate of le—2 which allows us to
reach convergence. All results are obtained by performing
5-fold cross-validation. We apply a prior constraint to our
graph, imposing no causal relationship from mechanical
biomarkers towards ionic current blockades.

The resulting causal graph reveals latent causal relation-
ships between the three channels: in Fig. 1 (2) we report
the average values obtained for the A, weights, which
quantify the strengths of each causal link. MC2VAE cor-
rectly identifies a causal link between drug-induced block-
ades (I) and electrophysiological biomarkers (E), which
was expected. The causal relationship between T, the tor-
sadogenic indices, to both [ and E can be justified in the
light of the definition of 7”s parameters themselves, which
explicitly take into account drug concentration, affecting
ionic current blockades and action potential-related fea-
tures. Finally, it should be noted that our method exhibits a
bidirectional causal relationship between E and T', mean-
ing that it can not totally exclude the existence of a causal
link from E to T'. However, the absolute weight of the lat-
ter causal arrow is very low, hence can be considered as
less relevant.

To quantify the impact of the discovered causal graph
in defining a meaningful latent representation of the chan-
nels, we evaluate MC2VAE’s ability to reconstruct the in-
put data, measured through mean squared error (MSE): the
causal learning step enables efficient reconstruction of the
input data, and a net improvement with respect to the case
in which we perform separate training of 3 independent
VAE:s, one per channel (Fig. 2), blue boxplots).

In Fig. 3 (left) we show the three-dimensional latent
representation of each drug obtained by sampling 50 times
from their learned distribution, each axis being the latent
coordinate for a specific channel. Despite MC?VAE is a
fully unsupervised method, we can clearly see the sepa-
ration of the drugs in the latent 3D space with respect to
their known TdP risk (considered here as binary, unsafe,
in orange, for known or possible TdP risk drugs, and safe,

2.00- I Causal
- s Non causal

——

Channel

Figure 2: Mean squared errors per channel.

in purple, for the remaining categories). For the sake of
clarity, we further project these representations in each 2D
plane (Fig. 3, right panels), and show two unsafe and two
safe drugs: ibutilide (orange circle), disopyramide (orange
square), loratadine (purple circle), and diltiazem (purple
square), as an example.

Finally, we challenge our latent representation for the
downstream binary classification task and study the im-
pact of an increasing number of channels to characterize
drug-induced TdP risk. Fig. 4 shows that the inclusion of
each of the considered channels brings additional valuable
information for TdP risk assessment, generating evidence
and a strong rationale for including them in the analysis.

4. Conclusion

In this paper, we have used a novel Multi-Channel
Causal Variational Autoencoder (MC2?VAE) to identify
causal relationships between ionic current blockades, elec-
trophysiological biomarkers, and torsadogenic indices.
Our approach reveals and quantifies the hidden causal rela-
tionships among the different sets of biomarkers, and helps
to justify the integration of these three channels, as their
joint causal analysis shows that they produce a much more
effective and actionable characterization of TdP risk than
considering one channel at a time. This work opens up
several directions: for instance, we plan to include addi-
tional information in the model, either as a new channel,
or for a semi-supervised approach, or finally as a causal
node to be related to the latent channels. We are also inter-
ested in studying more complex causal relationships while
encoding-decoding structures can be diversified to better
adapt to the intrinsic nature of each channel.
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Figure 3: Left: scatter plot of all drugs in the 3D latent space. Right: Kernel density distribution of drugs for each pairwise
combination of latent channels. Unsafe drugs are in orange; safe drugs are in purple.
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