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Abstract

The effect of the modelling errors on the solution of
the inverse problem of electrocardiography is investigated.
The electrocardiographic signal is simulated using a finite
element model of human torso and realistic source patterns
gained with a cellular automaton. Noise is added to
simulated measurements and the inverse problem is solved.
Modelling errors consist of false conductivity assumptions,
changed anisotropy ratio of skeletal muscles and geometric
errors. The effect of modeling errors on optimal regulariza-
tion parameter determination is investigated. The changes
in muscle anisotropy and heart position are shown to have
the highest effect on reconstructed epicardial potentials.
CRESO and L-curve criteria for optimal regularization
parameter estimation are compared.

1. Introduction

The reconstruction of epicardial potential distributions
from measured body surface potential maps (BSPM) plays
an important role in noninvasive cardiac source imaging.
Methods varying from simple truncated singular value
decomposition to complex optimization procedures exist
to solve this ill-posed problem. All of these methods
require a model of the volume conductor which adequately
describes the relation between the source patterns on the
epicardial surface and the BSPMs. The creation of a high-
quality model is a complex and time-consuming procedure.
Therefore, a question of great interest is what level of details
the model must include for the reconstruction procedure to
be successful. The analysis of modelling errors in forward
and inverse bioelectric field problems is still an important
research topic [1][2]. In this work we investigate the effect
of modelling errors on the inverse solution using a highly
detailed finite element model of human body and simulated
realistic source patterns gained with a cellular automaton.
The errors in assumed conductivity values and variations in
skeletal muscles anisotropy ratio as well as the geometric
errors are simulated. The effect of the modelling errors on
the optimal regularization parameter determination and on
the quality of the reconstruction is evaluated.
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2. Methods

This section describes the formulation of the forward and
inverse electrocardiografic problems, methods for optimal
regularization parameter estimation and the numerical si-
mulations performed.

2.1. Forward problem

The construction of transfer matrices and the BSPM
simulations require multiple solutions of Poisson’s equation
for electrical conduction:

V- (oVy) =i 1)

where ¢ is the potential, o the conductivity tensor and
i the impressed source current density [4/m3]. Equation
(1) was solved by Finite Element Method (FEM). Finite
element model of human torso (Fig. 1) consists of about
800.000 tetrahedrons and includes more than 20 tissue
classes as well as fiber orientation in skeletal muscles
and myocardium. About 60.000 mesh nodes are placed
regularly in the heart to allow for the interpolation of
sources gained with a cellular automaton. The finite
element model was derived from the MEET Man data
set developed at the Institute of Biomedical Engineering,
Universitit Karlsruhe (TH) [3].

The BSPM simulation starts from computing the trans-
membrane potentials in the heart with a cellular automa-

Figure 1. Finite element model of human torso.
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ton [4]. The transmembrane potential distributions are
simulated for complete cardiac cycle with a given time step.
Then the impressed current source density distributions are
computed using bidomain model [5] and a series of forward
computations is performed to get BSPMs.

2.2. Inverse problem

Discretization of equation (1) leads to a linear relation-
ship between the vector of epicardial potentials z and the
vector of body surface potentials b:

Az =b ()]
The transfer matrix A describes the geometrical and con-
ductive properties of the torso model. The inverse problem
of finding z from b is ill-posed and requires regularization.

For solving the inverse problem, Tikhonov zero-order
regularization was used:

2y = arg min{||Az — bl + N*||zlI3},  (3)
where A is the regularization parameter and z) is the
corresponding approximate solution [6].

Two criteria for a priori regularization parameter esti-
mation are popular in connection with inverse electrocar-
diographic problems: Composite REsidual and Smoothing
Operator (CRESO) [7] and L-curve [8]. CRESO criterion
delivers optimal Ac as a first relative maximum for the
function

C) = llzal? + 222 s @
The L-curve criterion involves a log-log scale plot of ||z||
against || Az—b|| for all valid regularization parameters. The
optimal Ay lies in the corner of L-curve and can be found
as a point of maximal curvature.

2.3. Simulations

The numerical procedures for Tikhonov regularization,
L-curve and CRESO computations were implemented
based on singular value decomposition (SVD) of transfer
matrix A [9]. For the case of zero-order Tikhonov regulari-
zation both curvature of L-curve and CRESO function can
be computed directly without numerical differentiation.

Modelling errors were introduced into the inverse prob-
lem by changing the conductivities of fat, lungs, blood and
bones in the finite element model, varying the anisotropy
ratio for skeletal muscles and changing model geometry.
Geometric errors were simulated by scaling or displacement
of the finite element mesh in the region of the heart. The
deformation was smoothed with 3D Gaussian distribution
centered on the heart and parameterized to .confine the
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deformation in the heart region. The scaling corresponded
roughly to +5 mm and -5 mm variation of the heart radius.
The displacement was 10 mm and 20 mm to the right
or to the left. Setting conductivity of bones to average
value of 0.1 S/m corresponds to the situation when the
model is constructed from MRI scans where bones are
not resolved. Transfer matrices were computed including
modelling errors and used for reconstructing the epicardial
potentials from simulated BSPMs gained with the original
model. Gaussian noise of 0.5% of torso potential range was
added to the BSPMs in all simulations.

The body surface potentials were “measured” at 64
locations of the torso surface and the epicardial potentials
were reconstructed at 306 equally spaced epicardial nodes.
The positioning of the measurement electrodes was dense at
the front of the torso and dispensed in regions more distant
to the heart. Such an arrangement allows to improve the
condition number of transfer matrix compared to the same
number of regularly placed electrodes [10].

In order to evaluate the success of regularization pro-
cedure, an optimal solution is required. Although the
simulated epicardial potentials were available, they could
not be used for direct comparison with reconstructed ones.
The reason is that the high frequency content of the realistic
simulated patterns is impossible to reconstruct due to limi-
ted number of sampling points on epicardial surface and
even less number of measurement electrodes. Therefore,
the optimal solution was constructed as follows. A transfer
matrix A was computed with about 500 nodes on body
surface and the same 306 epicardial nodes as in all other
simulations. Optimal solution z°?* was found using the
truncated pseudoinverse of A:

z°Pt = Alb

&)

where b is the vector of the simulated body surface poten-
tials without any added noise, and the truncation parameter
k was chosen by minimizing

[ Az°P* — b]l2 (©)

A and b being the original transfer matrix and the simulated
torso potentials (without added noise) for the 64 electrodes
configuration.

The relative error (RE) and the correlation coefficient
(CC) were used to compare the reconstructed potential
distributions with the optimal ones:
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3. Results

The BSPMs were simulated with time a step of 2 ms
for complete cardiac cycle. Fig. 2 shows the simulated
electrocardiogram (ECG) corresponding to the standard
lead I. The simulations were carried out as described above.
Only the time interval corresponding to the QRS complex
(200-250 ms) was considered. To evaluate the performance
of L-curve and CRESO criteria, optimal regularization
parameter A,y is found by minimizing the RE between
the reconstructed epicardial potentials and optimal solution
z°Pt,  The average relative errors (REL), (REc) and
(RE,pt) were also computed to characterize the success
of the reconstruction procedure on the whole QRS interval.
They correspond to L-curve, CRESO and optimal regula-
rization parameter choices, respectively. The values of the
average relative errors, the correlation coefficients for three
moments of time (Fig. 2) and the values of regularization
parameters for several types of modelling errors are sum-
marized in Table 1. Changing the conductivity of fat, lungs
or blood by 20% did not lead to any changes of average
RE compared to the original model and led to only little
changes in the computed optimal regularization parameters.

4. Discussion

Both CRESO and L-curve criteria performed equally
well and delivered almost the same values of the optimal
regularization parameter for unchanged model and mod-
erate modelling errors, such as changing the conductivity
of single tissue classes by up to 20%, little scaling and
displacement of the heart region. Under worse conditions,
the L-curve criterion appeares to be more stable and still
deliveres the regularization parameter close to the optimal.
Both criteria were additionally stabilized by setting the limit
on minimal valid regularization parameter. This value was
constant during the heart cycle and equal for both criteria.
The analysis of average RE shows that moderate changes
in conductivity of single tissue classes as well as little
geometric errors do not lead to significant errors in the
reconstructions. The changes in anisotropy ratio and the
displacements of the heart geometry have the highest effect
on the inverse problem solution. By the displacements
to the left the heart is moved closer to the body surface
and thus the effect on the inverse solutions is more no-
ticeable compared to the displacements to the right. Since
the reconstructions obtained with homogeneous isotropic
model had the greatest errors in computed potentials and
the lowest correlation with the optimal solution, such model
can not be recommended for inverse epicardial potential
reconstructions.
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Figure 2.  Simulated electrocardiogram. The vertical

dashed lines correspond to t=222, 234 and 240 ms.
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Table 1. Results of the epicardial potential reconstructions

[ tissue [t,ms | (REL) (REc) (REep) | CCL__CCc CCopt | AL,1073 Ac,107%  Agp, 1077 |
original 222 | 0.824  0.826 0.802 | 0.762 0.758 0.776 1.33 1.44 0.80
model 234 0.805 0.806 0.806 0.54 0.51 0.51
(muscles 1:3) | 240 0.868 0.867 0.867 1.50 1.32 1.39
muscles 222 | 0910 1.07 0.840 0.673 0.672 0.674 1.52 1.42 3.44
1:10 234 0.723 0.721 = 0.695 0.38 0.34 0.37

240 0.824 0.808 0.829 1.01 0.78 2.77
bones 222 | 0.831 0.903 0.810 0.752 0.751 0.765 1.17 1.23 0.80
0.15/m 234 0.803 0.803 0.802 0.51 0.49 0.54
240 0.860 0.859 0.860 1.50 1.34 1.47
homog. 222 | 0.892 0.960 0.853 0.596 0.573 0.662 1.25 1.17 3.87
isotrop. 234 0.707 0422 0.718 2.55 0.15 1.27
240 0.764 0.719 0.798 1.12 2.06 4.42
scale heart 222 | 0.821 0.861 0.800 | 0.782 0.786 - 0.786 1.29 0.90 0.90
+5mm 234 0.803 0.803 0.804 0.61 0.62 0.54
240 0.857 0.856 0.856 1.68 1.52 1.58
scale heart 222 | 0.838 0.843 0.813 0.734 0.734 0.750 1.22 1.22 0.76
-Smm 234 0.798 0.799 0.791 0.47 0.42 0.66
240 0.869 0.868 0.869 1.32 1.12 1.30
heart 222 | 0.832 0.835 0.811 0.752 0.731 0.758 1.48 0.57 1.07
10mm left 234 0.774 0.773  0.777 0.59 0.60 0.52
240 0.873 0.871 0.873 1.47 1.28 1.44
heart 222 | 0.836  0.849 0.814 | 0.747 0.746 0.759 1.27 1.30 0.76
10mm right 234 0.792 0.791 0.790 0.52 0.47 0.66
240 0.828 0.827 0.829 1.51 1.33 1.55
heart 222 | 0.861 1.28 0.836 0.718 0.653 0.721 1.79 0.51 1.46
20mm left 234 0.690 0.689 0.687 0.63 0.68 0.73
240 0.841 0.835 0.843 1.41 1.19 1.68
heart 222 | 0.868 0.899 0.841 0.710 0.710 0.710 1.28 1.36 1.30
20mm right 234 0.744 0.743 0.742 0.54 0.49 1.05
240 0.754 0.750 0.762 1.51 1.33 241
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