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Abstract 

The phase spectra obtained by the classical closed 

loop autoregressive model (2AR) and by an open loop 
autoregressive model (ARXAR) were compared to shed 

light on the need of introducing causality in the 

assessment of the delay between RR and arterial pressure 

oscillations. The reliability of the two approaches was 

tested in simulation and real data setting. In simulation, 

the coupling strength of a bivariate closed loop process 
was adjusted to obtain a range of working conditions 

from open to closed loop. In open loop condition, 2AR 

and ARXAR phases were comparable and in agreement 

with the imposed delay. In closed loop condition, ARXAR 

model returned the imposed delays, while 2AR showed an 
intermediate value of delay. Real data were chosen to 

represent comparable physiological condition. The use of 

cross spectrum for calculating the delay from arterial 

peressure to RR oscillations seems adequate only in 

particular condition of open-loop relationship as it 

happens during head up tilt in young healthy subjects. 
 

1. Introduction 

The spontaneous fluctuations in arterial pressure and 

heart rate have been subject to many studies aimed to 

quantify strength and nature of the coupling between 

cardiovascular signals [1,2]. Cross-Spectral techniques 

were introduced for estimating the linear transfer function 

and specifically for assessing the gain function as 

baroreflex sensitivity has been demonstrated to be useful 

for stratifying risk in post MI patients [3]. However, for 

fully disclosing the nature of the linear relationship 

between arterial blood pressure fluctuations and cardiac 

cycle changes the phase function has to be accounted too. 

Although heart period and systolic arterial pressure 

strongly interact in closed loop, gain and phase spectra 

calculated from the cross-spectral matrix have been for a 

long time considered as a measure of the baroreflex 

function, thus disregarding the contribute of the 

feedforward mechanism to the regulatory loop. Causality 

was therefore recently introduced for quantifying the 

information exchange on a specific path of the regulatory 

loop. While linear and non linear causal models were 

introduced for estimating strength [4-6] and gain [7] of 

feedback and feedforward mechanisms, till now no 

studies have dealt with the estimation of the phase lag 

between cardiovascular fluctuations with appropriate 

causal approach. Thus, this study aims to shed light on 

the need of a causal approach for estimating phase 

relationships in cardiovascular fluctuations. A parametric 

linear causal model (ARXAR) is exploited for estimating 

the phase spectra on the baroreflex regulatory path 

(feedback phase), and the results are compared with those 

obtained by a closed loop bivariate autoregressive model 

(2AR). Simulations and examples from real data, 

reproducing closed and open loop interactions, are 

presented to mimic different working conditions of the 

regulatory system. 

2. Methods 

2.1. Phase estimation by traditional biva-

riate approach 

The classical method for assessing the phase 

relationship between two variability series x and y is 

based on representing their interaction by an input-output 

model and then calculating in the frequency domain the 

angle of their transfer function Hxy( f ): 
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where Px( f ) is the spectral density function of x and 

Pxy( f ) is the cross-spectrum between x and y. 

When cross-spectral estimation is performed by the 
parametric autoregressive (AR) approach [8], the 

interactions between x and y are modeled by the 2AR 

model shown in Figure 1, which is described by the two 

equations: 
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where w1 and w2 are uncorrelated zero-mean white 

noises with variance σ2
2 and σ2

2. The blocks: 
 

( ) 2,1,,)(

0

==
=

− jizkazA
P

k

k
ijij  

 

where z-1 represents the one-lag delay operator, 

describe the dependence of a series on its own past for i=j 

(with a11(0)= a22(0)=0), and the dependence of a series on 

the samples of the other for i≠j. The transfer function 
from x to y is calculated by substituting in (1) the spectra 

obtained from (2) and (3): 
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for values of the complex variable z belonging to the 

unitary circle (i.e., z=ej2πfT, where T is the sampling 
period). 

2.2. Phase estimation by causal approach 

The ARXAR model [9] represented in Figure 2 was 

introduced to assess the phase lag between the two series 

x and y by accounting for the causality of their 

interactions. The model is defined by the equation: 
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where the colored noise u1 and the exogenous input x 

are described as AR processes with w1 and w2 zero-mean 
white noises. The ARXAR model is able to elicit the 

causal dependence of the output y over the input x from 
the other contributions which influence y without 
affecting x (modeled by the u1 signal). 
The transfer function from x to y is obtained from the 

ARXAR model as follows: 

 

( )
fTj

ez

xy
zA

zA
fH

π211

21

)(1

)(

=
−

=  

2.3. Simulations 

The two methods for assessing the phase relationships 

between two time series were tested on the bivariate 

process described by the equations [4]: 

 

s(t)=-0.7r(t-2)+γ·w1(t) 

r(t)=0.7s(t)+δ·w2(t) 
 

where w1 and w2 are uncorrelated white noises with zero 

mean and unitary variance. When δ=0 with γ=1, the 
relationship from s to r is deterministic (with lag equal to 

0) and thus its causal link is magnified with respect to 

that of the relationship from r to s. On the contrary, when 

γ=0 with δ=1 the relationship from r to s overwhelms the 
link from s to r, with a 2-samples delay. The strength of 

the coupling on the two paths is equalized when δ=γ=1. 
Simulations were repeated by varying one of the two 

parameters δ and γ from 0 to 1, step 0.1, while keeping 
equal to 1 the other parameter. A realization of the 

bivariate process (300 points) was generated for each 

combination of γ and δ, and phase spectra were computed 
by the traditional bivariate approach and by the proposed 
causal approach. In causal analysis, the phase was 

estimated on both pathways from r to s and from s to r. 

2.4. Real data 

One lead ECG and noninvasive arterial pressure 

(Finapres, Ohmeda) were acquired in a healthy young 
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Figure 1. Block diagram of the autoregressive bivariate

(2AR) model for the closed loop description of the

interactions between two time series. 

xw1

w2 u1

 A22

 A11

 A12 

 A21

Figure 2. Block diagram of the autoregressive bivariate

model with exogenous input (ARXAR) for the open loop

description of the interactions between two time series. 
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subject (M, 29 years) during rest and head-up tilt. The RR 

interval and the systolic arterial pressure (SAP) were 
measured on a beat-by-beat basis, and stationary series 

lasting 300-points were constructed by considering the ith 

SAP value inside the ith RR interval [10]. 

3. Results 

Figure 3 shows the phase spectra obtained by 2AR and 

ARXAR models applied to the simulated bivariate 

process for values of the parameter γ moving from zero to 
one (δ=1). The 2AR model returns correct estimates of 
the imposed phase lag (i.e., a straight line with slope 4π, 
corresponding to a constant delay of 2s) only when the 

relationships from r to s is deterministic (i.e., γ=0), while 

the estimated phase resulted as a mix of the delays of the 

two interacting pathways when the coupling became 
significant in both causal directions.  

When δ=γ=1, the phase plot exhibited a slope of about 
2π, indicating an estimated delay of 1 s. On the contrary, 
the ARXAR model returned the expected slopes of the 

phase plot, namely 4π with r as input and 0 with s as 
input, for all values of γ. 
A similar behavior was observed by varying the 

parameter δ while keeping γ equal to 1 (Figure 4). With 
δ=0, both 2AR and ARXAR models were able to detect 

the imposed phase lags, while the rise of δ caused an 
increasing unreliability of 2AR phase estimates and an 
unchanged response of the ARXAR estimate.  
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Figure 3. Phase spectra obtained by 2AR model and

ARXAR model applied to the simulated series, at varying

values of the parameter γ. 

Figure 4. Phase spectra obtained by 2AR model and 

ARXAR model applied to the simulated series, at varying 

values of the parameter δ. 
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An example of phase spectra estimations with 2AR 

and ARXAR models on real data is showed in Figure 5. 

Low frequency phase values were markedly different 
when the subject was supine. Differently, the two 

estimators identified comparable low frequency phase 

when the sympathetically-mediated regulatory 

mechanism was activated by head-up tilt. 

4. Discussion 

At rest in, in human both feedforward and feedback 

pathways of the regulatory loop are important and a 
different balance between these two mechanisms often 

characterizes physiological and pathological conditions 

[5,6]. Thus, the approach to transfer function assessment 

thorough the traditional bivariate cross spectral analysis 

can be inappropriate to shed light on the real working 

condition of cardiovascular regulatory mechanism.  
In this study the performance of causal and non-causal 

phase estimators were compared on a set of simulated 

signals generated by a bivariate process mimicking 

different levels of causal coupling. Simulations 

demonstrated that only when open loop condition were 
reproduced, 2AR and ARXAR phases were comparable 

and in agreement with the imposed delay, otherwise only 

the causal model was able to estimate the right delay 

between oscillations in the two simulate signals. Similar 

results were found when the two models were applied on 

real data with known closed or open loop conditions. 

In conclusion, in the presence of closed loop 
relationship the phase estimated by bivariate model 

(2AR) is unreliable since mix the effect of the 

feedforward and feedback arms. The use of cross 

spectrum for calculating the delay of RR oscillations 

from SAP ones seems adequate only in particular 

condition of open-loop interactions. 
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Figure 5. Example of phase estimation in a young healthy

subject in rest and tilt by 2AR model (continuous line)

and ARXAR model from s to r (dashed line). 
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