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Abstract 
 
     A simple and computationally efficient new signal 
quality measure that is responsive to combinations of both 
physiological and non-physiological noise has been 
developed. The new signal quality measure is based on 
the use of the area differences between successive QRS 
complexes. The signal quality assessment for each lead is 
made on the basis of the characteristics of the statistical 
distribution of the area differences obtained over a period 
of time. The new signal quality measure was evaluated 
using the 44 non-paced patient records from the MIT-BIH 
two-channel arrhythmia database. Results presented in 
histogram and cumulative histogram plots showed that 
the signal quality can be accurately assessed using this 
new method. Of the total 44 non-paced records, the new 
method identified 22 records where one of the two leads 
had much better signal quality than the other lead. When 
this information was used for arrhythmia analysis, the 
averaged PVC false positive rate was 0.47% for leads 
that were selected by the new method, and 2.56% for 
leads that were not selected. These results clearly showed 
that the new signal quality measure developed can be 
used to accurately assess the ECG signal quality and can 
be incorporated easily into existing arrhythmia 
algorithms for performance improvement. 
 
1.   Introduction 
 
     With the development of advanced microprocessor 
technology and the related digital hardware, the use of 
multiple ECG leads for real-time arrhythmia analysis has 
quickly become a monitoring standard. Because of the 
availability of these new technologies, there has been an 
increasing interest in developing monitoring algorithms 
that can simultaneously process more than a single ECG 
lead. One of the key components in a multi-lead algorithm 
is the determination of which ECG channels should be 
included in the processing. Lead selection for a multi-lead 
monitoring algorithm is essential for the following 
reasons: (1) despite the increased amount of processing 

power available in the modern patient monitors, an ECG 
algorithm still has to share any processing resource with 
many other functions that these monitors perform, and, 
consequently, the amount of the processing resource 
allocated for the algorithm may therefore put a limit on 
the total number of ECG leads that such an ECG 
algorithm can process; (2) because many of the ECG 
leads are highly redundant, there is really no need to 
process all the available ECG leads all the time; (3) the 
advantage of  processing one or more additional ECG 
leads can improve performance only if these additional 
leads exhibit high signal quality; in fact, using leads that 
have inferior signal quality will actually degrade 
algorithm performance rather than improve it.  
     Therefore it is important to develop a method of 
measuring the quality of the ECG signals. This signal 
quality measurement may be used in identifying which 
ECG leads are of high quality and thus should be selected 
for processing. In addition, this quality measure could 
also be used in determining the weighting of information 
from different ECG leads for QRS complex classification.   
     Clinical experience with current ECG-based 
monitoring algorithms has shown that noise has been the 
primary source of performance degradation for these 
algorithms.  Noise that causes the degradation includes 
both non-physiological and physiological noise. Examples 
of non-physiological noise sources are 50/60 Hz line 
noise, baseline wander noise, electrode motion artifacts, 
and muscle artifacts. Examples of physiological noise are 
axis shift, QRS morphology variation, QRS amplitude 
variations, and atrial fibrillation/flutter.  
     There are a few known techniques for the detection of 
individual types of non-physiological noise (mostly, only 
for out-of-band noise such as 50/60 Hz noise, baseline 
wander, and high frequency muscle artifacts). However, 
there is no known technique for the detection of 
physiological noise. Furthermore, there are no known 
techniques for the detection and/or quantification of 
composite noise sources, be they strictly non-
physiological, strictly physiological, or some combination 
of both. Therefore, the objective of this paper is to 
develop a single signal quality measure that is 
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Figure 1. A high-level graphical schematic diagram of the new signal quality assessment algorithm   
 
 
responsive to both non-physiological and physiological 
noise. 
            
2.   Method 
 
     The quantitative assessment of the noise contained in 
the ECG signal is achieved by the use of a mismatch 
indicator that combines various noise sources into a 
single metric. This metric is computed based on the area 
differences between successive QRS complexes (i.e., 
adjacent beats, every other beats, every third beats, etc.)  
When an ECG lead is essentially noise free, the area 
differences will be small. On the other hand, if the 
signal contains any significant amount of noise (whether 
from non-physiological or physiological sources) the 
area differences between successive QRS complexes 
will tend to be relatively large. By examining the area 
differences over a period of time, the signal quality 
associated with each ECG lead can be made on the basis 
of the characteristics of the statistical distribution of the 
calculated area differences. For signals that are 
relatively noise free, the distribution of the area 
differences will tend to be more tightly clustered with 
smaller values. Conversely, for signals that are 
relatively noisy, the distribution of the area differences 

will tend to be more spread out and the calculated 
values will tend to be large.   
     The metric used for measuring the waveform area 
difference between two complexes X and Y is the 
normalized area difference as shown below:  
 
      

�
 � X (i) − Y(i) �  

     Mismatch (X, Y)  =   
                

�
 � X (i) �  + 

�
 � Y(i) �  

 
This metric is selected not only because it is more 
computationally efficient than the cross correlation 
function but also because it is sensitive to QRS 
amplitude variation. The value of the mismatch ranges 
from 0 to 1. When the two waveforms are identical, the 
mismatch value is 0. When the two waveforms are 
totally different (i.e., there is no overlap) the mismatch 
value is 1.0.  In order to deal with integer values only, 
the mismatch value is arbitrarily scaled to a range from 
0 to 512.  
     The high-level schematic diagram of an 
implementation of the new technique is shown in Figure 
1, and the steps involved are described in the following: 
QRS detection - All beats detected are saved and used in 
the subsequent signal quality analysis.  
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Fiducial point calculation – This is done so that a good 
starting point is provided to minimize the shifting 
required in the shifted mismatch computation. 
Shifted mismatch computation – To ensure that the 
calculated area differences are due to true morphology 
variation rather than misalignment of the waveforms, 
the beats to be compared are shifted around the fiducial 
point to find the minimum mismatch value.  
Generate mismatch histogram - The values of the area 
differences for successive beats over a period of time 
are stored as histograms for subsequent analysis. 
Generate cumulative histogram – Cumulative 
histograms are derived from the histograms for 
subsequent signal quality analysis. 
Signal quality analysis – The signal quality can be 
determined based on how fast the cumulative histogram 
curves rise. The signals with higher quality will rise 
faster than the signals with lower quality. Hence the 
order of the curves in the cumulative histogram 
automatically provides the ranking of the signal quality 
(the first curve on the left has the highest signal quality). 
 
3.    Results 
 
     Graphical Presentation  - In this section, several 
examples are provided to demonstrate the ability of this 
new signal analysis technique in assessing signal 
quality. The test signals used are from the two-channel 
MIT-BIH database. In each example, the first 1minute 
of the two-lead ECG signals is shown in full disclosure 
plot, and followed by the histograms (shown on the left) 
and their corresponding cumulative histograms (shown 
on the right) of the mismatch values for the first 1, 3, 5, 
and 30 minutes of the ECG record. In each histogram 
plot, the vertical axis represents the actual number of 
beats, and the horizontal axis is the scaled mismatch 
number (range from 0 to 512). Results for the first ECG 
lead are plotted in dotted line, and the results for the 
second ECG lead are shown in solid line. 
Record 209 (Figure 2) – For this record the 1st ECG lead 
is the preferred lead for automated arrhythmia analysis 
because the waveforms exhibit very little variation. The 
histogram plots accurately show that the 1st ECG lead is 
better because of the smaller mismatch values and fast 
rising cumulative histogram curve.  
Record 119 (Figure 3) – For this record both leads 
exhibit good signal quality. However, due to the 
presence of bigeminy, the histogram plots generated 
from the mismatch values between every other beat 
(shown on the right) should be used instead of those 
obtained from the adjacent beats (shown on the left) for 
more accurate signal quality assessment. The 
overlapping curves accurately show that both leads have 
the same good quality for automatic analysis. 

Record 203 (Figure 4) – For this record the 2nd ECG 
lead is not good for ventricular arrhythmia analysis due 
to the presence of atrial flutter/fibrillation waveforms. 
The cumulative histogram plots again accurately show 
that the 1st ECG lead is the preferred lead for analysis. 
 
 

 
 

 
Figure 2. ECG signals and signal quality histogram 
plots for MIT-BIH Record 209. 
 

 
 

 
Figure 3. ECG signals and signal quality histogram 
plots for MIT-BIH Record 119. 
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Figure 4. ECG signals and signal quality histogram 
plots for MIT-BIH Record 203  

 

 
 

 
Figure 5. ECG signals and signal quality histogram 
plots for MIT-BIH Record 207. 
 
Record 207 (Figure 5) – This example shows that 
despite the presence of ventricular bigeminy, and 
episodes of VT and ventricular flutter, the heavily 
overlapping cumulative distribution curves indicate that 
both ECG leads have good signal quality for analysis. 

     From these examples it is clear that the new signal 
quality assessment algorithm can be used to accurately 
assess the quality of the ECG signals. 
     Arrhythmia Performance - As a further example to 
show the potential value of this method in arrhythmia 
detection performance improvement, all 44 non-paced 
records from the MIT-BIH database were processed for 
each lead independently by an arrhythmia algorithm 
running in single-lead mode. False positive rates for 
PVC detection for each record were then generated. 
Using the new signal quality measure algorithm, a total 
of 22 records were identified to have one lead exhibited 
much better signal quality than the other lead. For these 
22 records, the averaged PVC false positive rates for 
both the single leads selected as better quality and the 
leads not selected were separately computed. The results 
are presented in Table 1 below. From these results it is 
clear that as expected the leads that are identified by this 
new algorithm as the signals with higher quality provide 
much better performance (lower false positive rate on 
PVC detection) than those leads that are not selected. 
 

 Leads selected Leads not 
selected 

Averaged PVC 
Detection False 
Positive Rate 

 
0.47% 

 
2.56% 

Table 1. Arrhythmia performance improvement 
summary  
 
4.   Conclusion 
 
     A simple and computationally efficient new signal 
quality measure that is responsive to combinations of 
both physiological and non-physiological noise has been 
developed. The usefulness of this technique in 
quantifying the signal quality has been demonstrated. 
These results clearly showed that the new signal quality 
measure developed can be used to accurately assess the 
ECG signal quality and can be incorporated easily into 
existing arrhythmia algorithms for performance 
improvement. 
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