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Abstract

This paper compares two methods of non-uniform

ECG sampling: the variable depth decimation (VDD) and
the continuous non-uniform sampling (CNU).

The VDD algorithm uses the wavelet-based time-scale

decomposition of the segmented ECG in which the high

frequency scales representation is eliminated for the

signal sections of narrower bandwidth (e.g. T-P

segment). In result, the signal is locally decimated down
to the level depending on the expected bandwidth. The

CNU algorithm uses a soft estimation of the length for

each subsequent sampling interval on a basis of expected

local bandwidth of the signal.

For ECG records from the CSE Multilead Database

the average efficiency of the VDD algorithm is
significantly higher (4.26) than the efficiency computed

for the CNU method (3.01). Unfortunately, the global

reconstruction error (PRD) is also higher for the VDD

(0.40%) than for the CNU algorithm (0.22%).

1. Introduction

Optimizing the transfer of the fundamental vital sign

(electrocardiogram, ECG) is the focus point of high

priority in the modern information society. The discrete

ECG representation commonly uses the uniform

sampling that is easy to manage but not optimal for this

variable-bandwidth signal. The use of non-uniform

sampling adapted to the local signal contents is an

interesting alternative for its two advantages: reduced

data volume and improved signal-to-noise ratio.

This paper describes the comparison of two methods

of non-uniform ECG sampling developed currently in our

laboratory: variable depth decimation (VDD) [1] and

continuous non-uniform sampling (CNU) [2]. Both

methods require as input an ECG-based function defining

the instantaneous bandwidth of the signal. For the

comparison purpose the same local bandwidth function

related to the P-QRS-T waves' start- and endpoints was

used in each case.

Main novelty of this approach is the use of medical

information, extracted from the signal by the specialized

algorithm as it were used for the diagnostic purpose, to

influence the sampling parameters. Consequently, the

adaptive discrete representation reflects the non-uniform

temporal distribution of medical data in the ECG signal.

The VDD algorithm uses the wavelet-based time-scale

decomposition of the segmented ECG in which the

representation of scales corresponding to high frequency

is eliminated for the signal sections of narrow bandwidth.

In result, the signal is locally decimated down to the level

depending on expected signal bandwidth.

The CNU algorithm uses a soft estimation of the

length for each subsequent sampling interval on a basis of

expected local bandwidth of the signal. First, the adaptive

anti-alias filtering eliminates the components of

frequency exceeding the local bandwidth of cardiac

representation. Then, the positions of irregularly spaced

samples are computed and their values are estimated with

use of cubic splines interpolation.

2. Principles of adaptive representations

This section guides into details about the detection of

local diagnostic information density and explains the

principles of both compared optimisation algorithms.

2.1. The local bandwidth of the ECG

The segmentation of the ECG signal may be

performed by any subroutine, complying with the

diagnostic standards [3, 4]. For testing the optimisation

algorithms we used a typical subroutine originally

designed for an ECG recorder or the reference

segmentation points provided by the CSE Multilead

database [5]. The segmentation bases on the ECG signal

sampled at a constant rate (500 Hz).

The temporal relationship of medical data

vulnerability resulted from our previous experiment with

controlled data cancelling in time-frequency domain [6]

was used as an estimate of the required local bandwidth

of the ECG signal. Other ECG-related functions may also

play this role accordingly to the particular diagnostics

interest.

The shape of this standard importance function is

piecewise fitted with use of the cubic spline interpolation

into the segmentation points detected individually for

each heartbeat (fig. 1).
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2.2. The variable depth decimation

The decimation of a discrete signal representation is

commonly implemented with use of filter banks. An

interesting algorithm is the lifting wavelet transform

(LWT), for its relatively high computational efficiency

and because it maps integers to integers directly [7, 8].

The single stage of lifted wavelet signal decomposition

(fig. 2) starts with splitting the signal into two half-length

components, what is called the trivial wavelet transform

or the Lazy Wavelet. Next, the half-band properties of

these strings are improved using the lifting and the dual

lifting alternately. The lifting operation means here

increasing the number of vanishing moments of a wavelet

without any changes of its properties.

A dual lifting step consists of applying a low-pass

integer filter p to the even samples and subtracting the

results from the corresponding odd samples. A primal

lifting step, used immediately thereafter, consists of

applying a high-pass integer filter u to the odd samples

and subtracting the results from the corresponding even

samples. The lifting algorithm generates two decimated

data strings: the low-pass coarse signal and the detail

high-pass signal. The lifting scheme is a reversible

process in the integer-format environment thus the

resulting stings contain complete original information.

Because nearly a half of the signal length is sampled at

the minimum rate, the decimation is performed

continuously and yields an uninterrupted coarse

approximation of the ECG. Within the P, QRS and T

waves, that start- and endpoints are valid also in the time-

frequency domain, the signal is completed by the details

representing high frequency bands. These components

appear occasionally depending on the adapted importance

function and thus need additional synchronization byte

referring to the continuous signal (figs. 3, 4). Adding the

high frequency information to the approximation sampled

at the low rate increases locally the effective sampling

rate and expands the bandwidth of the discrete signal.

Figure 2. The computing scheme of one stage of wavelet

decomposition using M lifting steps

Figure 3. The ECG signal, its time-frequency

representation and the effective sampling resulted from

the variable depth decimation

Figure 4. Coarse approximation of the ECG (0...32 Hz)

and high frequency details for P, QRS and T waves

Figure 1. Standard importance function and its version

adapted to the ECG signal (CSE, file Mo001)
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2.3. The non-uniform sampling algorithm

Sampling the signal at the variable rate involves two

independent processes controlled by the adapted

importance function: adjustment of the anti-alias filter's

cut-off frequency and calculation of the local sampling

intervals. Both of them return quantization-free values in

the continuous range from the minimum to the maximum.

The role of the digital anti-alias filter in the non-

uniform sampling rate algorithm is to suppress all the

components falling above the local bandwidth of the

ECG signal and below the Nyquist frequency of the

signal sampled at the constant rate. For this purpose we

adapted the sliding window average low-pass filter. The

window's centre is moved to the consecutive samples of

the original signal, but the window spans from 2 to 16 ms

depending on the value of the adapted importance

function. The border samples are partially included into

the window with use of weighting coefficients, and thus

the window length is not limited to the integer number of

samples. The resulted cut-off frequency covers the range

from 32 to 250 Hz (for sampling intervals of 16 to 2 ms).

The transformation of the constant sampling rate

signal to its variable sampling rate equivalent begins with

the computation of time points corresponding to irregular

positions of samples (fig. 5). These positions depend on

the adapted importance function (see fig. 1). Next, the

continuous ECG signal is simulated from regularly

spaced samples with use of cubic spline interpolation.

Finally, for each irregularly spaced sample the optimized

representation value is determined and memorised in the

output data stream (fig. 6) [9, 10, 11].

3. Results

For the purpose of testing, the reversible algorithm

performing the variable depth decimation (VDD) was

implemented in Matlab and processed the CSE-Multilead

Database signals (2.44 µV, 500 Hz). The reference start-
and endpoints for P, QRS and T waves in each signal

were fed to the importance function adjustment procedure

that provides data controlling the decimation depth. The

resulted data stream volume was compared with the

volume of the original record in order to compute the

average compression ratio (CR). The reconstructed signal

of constant sampling rate was next compared to the

original signal in order to estimate the differences (PRD)

caused by reduction of the data volume.

Table 1. The results of variable depth decimation -

average compression ratio (CR) and differences (PRD)

CR 4.27

global 4.75 (71.3)

within P-wave borders 0.38 (5.7)

within QRS-complex borders 0.40 (6.0)

within T-wave borders 0.50 (7.5)

PRD

[% (µV)]

out of waves 3.63 (54.5)

The algorithm of continuous non-uniform sampling

(CNU) was also implemented in Matlab and processed

the CSE-Multilead Database signals. This algorithm used

the same results of importance function adjustment as the

VDD procedure, but this data controls here the anti-alias

filter parameters and the local sampling interval length.

The average compression ratio (CR) is displayed in the

table 2 together with the estimate (PRD) of global and

local differences between the original and the

reconstructed ECG signal.

Table 2. The results of non-uniform sampling - average

compression ratio (CR) and differences (PRD)

CR 3.01

global 3.11 (46.6)

within P-wave borders 0.16 (2.4)

within QRS-complex borders 0.22 (3.3)

within T-wave borders 0.37 (5.6)

PRD

[% (µV)]

out of waves 1.11 (16.6)

The results given in tables 1 and 2 confirm that the

optimal discrete ECG representation is quite efficient.

Our experiments considered only the aspect of data

volume and distortion level, but it should be noticed that

another advantage of using the adaptive sampling rate is

an increase of signal-to-noise ratio. The tables also

demonstrate the temporal distribution of distortions that

concentrate in the signal sections with low diagnostic

importance.

Figure 6. Comparing the heart beat represented in the

regular and in the variable sampling rate signals

Figure 5. Sampling interval controlled by the values of

adapted importance function (CSE, file Mo001)

167



4. Discussion

The idea of adaptive discrete ECG representation is

realized in two algorithms: variable depth decimation and

continuous non-uniform sampling. The adaptability is

based on the medical findings, typically used for the

diagnostic purpose, derived automatically from the

signal. The standard importance function represents the

expected signal behavior and may be altered following

the needs of particular users. The user-defined sampling

profile is the third principal advantage of this approach,

besides data compression and suppression of noise.

The VDD algorithm yields better efficiency and thanks

to the use of LWT is significantly less complex than the

CNU method. These features predestine it to the

hardware implementation in portable ECG recording

devices. The VDD algorithm, however, has limitations

resulting from stepwise changes of sampling frequency:

- The sampling frequency is changed only by the

factor of two, because of the dyadic decimation

performed by the wavelet decomposition; the step of

such size is far too coarse to closely follow the shape

of adapted importance function.

- The temporal precision of sampling frequency

adjustment is limited by the Uncertainty Principle

and falls once or twice for the whole wave.

- The change of the sampling frequency results in

border effect oscillations and their appearance near

the wave start- or endpoints causes incorrect

assessment of wave's length.

The CNU method, despite its lower efficiency, better

follows the variability of physiological content of the

electrocardiogram. The sampling frequency adaptation

slope is smoother than in VDD algorithm and never has

discontinuities that reach the limits of Uncertainty

Principle. The border effect oscillations were not

observed in the reconstructed signals and the diagnostic

parameters computed from the optimized discrete

representation were practically the same as from the

original signal.

On the other hand, the efficiency and the

computational complexity of the CNU method is

comparable to the currently best ECG-dedicated bit-

accurate compression algorithms [12]. Therefore only

two advantages support the use of the CNU: suppression

of noise and the user-defined sampling profile. The

standard importance function is based on the

physiological sequence of heart activity. In case of severe

pathology, this sequence may be disturbed by

extrasystolies or missing waves. Complex signal

irregularities without a regular waveform (i.e. atrial

flutter) do not influence the sampling rate

adjustment and may cause inappropriate results of

optimization. This issue needs further study before the

clinical application of the adaptive discrete ECG

representation.

Acknowledgements

This work is supported by the University of Mining

and Metallurgy Krakow, Poland, grant no. 10.10.120.39.

References

[1] Augustyniak P, Wrze niowski A. ECG recorder sampling

at the variable rate. VI-th SYMBIOSIS 2001;6:128-35.

[2] Augustyniak P. ECG Sampling rate controlled by signal

contents. IFMBE Proc. 2002;2:154-5.

[3] Morlet D. Contribution a l'analyse automatique des

electrocardiogrammes – algorithmes de localisation,

classification et delimitation precise des ondes dans le

systeme de Lyon. (in French) Lyon: PhD thesis INSA-

Lyon 1986.

[4] Willems JL, Arnaud P, Van Bemmel JH. Assessment of

the performance of electrocardiographic computer

programs with the use of a reference database.

Circulation, 1985; 71(3):523-34.

[5] Willems JL. CSE Multilead Atlas – Data Set 3. Leuven:

Commission of the European Communities – Medical and

Public Health Research, 1988

[6] Augustyniak P. Pursuit of the ECG information density by

data cancelling in time-frequency domain. IFMBE Proc.

2002;2:152-153

[7] Calderbank AR, Daubechies I, Sweldens W, Yeo B.

Wavelet transforms that map integers to integers.

Technical report. Princetown Univ. 1996

[8] Mallat SG. A wavelet tour of signal processing. San

Diego: Academic Press, 1999

[9] Aldroubi A, Feichtinger H. Exact iterative reconstruction

algorithm for multivariate irregularly sampled functions in

spline-like spaces: the Lp theory. Proc. Amer. Math. Soc.

1998;126(9):2677-86.

[10] Aldroubi A. Non-uniform weighted average sampling and

exact reconstruction in shift-invariant spaces. Preprint,

2001.

[11] Feichtinger HG, Grochenig K. Theory and practice of

irregular sampling. In: Benedetto JJ. Frazier MW, editors.

Wavelets–Mathematics and Applications. Boca Raton,

Florida: CRC, 1993:305-63

[12] Duda K. Lossless ECG compression with adaptive lifting

wavelet transform. TICSP Workshop on SMMSP 2001;

257-61.

Address for correspondence

Piotr Augustyniak

Institute of Automatics, University of Mining and Metallurgy,

30 Mickiewicza Ave., 30-059 Kraków, Poland

august@biocyb.ia.ah.edu.pl,

http://galaxy.uci.agh.edu.pl/~august

168


