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Abstract

The analysis of time series measured from nonlinear
signals, may be performed either in the phase space or in
the tie-domain. The Largest Lyapunov Exponent (LLE)
characterizes exponential divergence of trajectories in
the phase space; fractal analysis is able to describe the
complex pattern of a given time series. To evaluate the
relation between the dynamic behavior and pattern
complexity of the inherent biological system, RR-interval
sequences were derived from 24-hour Holter recordings
performed in 55 healthy subjects (37 +/- 4 years, 34
males). Pattern fractal analysis (PFD) was computed on
the basis of the measured length and diameter of the
signal pattern. and LLE was evaluated by the Wolf
algorithm. For each subject, the linear regression
between computed PFD and LLE measures over the 24-
hour period has been computed, extracting the
correlation coefficient and the slope of the PFD vs. LLE
relation. The strongest linear correlation between LLE
and PFD indicates a tight link between the system
dynamics and the pattern of the extracted signals. This
link suggests the possibility of a direct evaluation of
nonlinear dynamics, even over short time intervals,
exploiting the computationally less expensive PFD.

1. Introduction

The analysis of heart rate variability (HRV) is
currently performed either in the time domain,
statistically —measuring the overall variance of

oscillations, or in the frequency domain, where spectral
estimates define their frequency and amplitude.

Heart activity, vasomotion and respiratory function
arc characterized by an intrinsic complexity, likely
related to the regulatory neural outflow dynamics,
disrupted by disease, which has a deterministic chaotic
nature as recently described {1], with clinical and even
prognostic relevance [2]. Among all the “nonlinear”
descriptors, most have limitations for the investigation of
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biological time series, due to the long epochs required for
the analysis and the heavy computational time needed.

Different extracted parameters are related to different
aspects of signal nonlinearity. The LLE, computed after
the reconstruction of the relative phase space, gives an
index of dynamical complexity in the signal [3,4],
whereas fractal analysis quantifies the signal propensity
to space occupation, evaluating the morphological
complexity exhibited by the pattern [5]. Nonlinear
dynamics of the inherent biological signals is highlighted
by the positive LLE, while the complexity of the RR
pattern is singled out by PFD higher values.

To assess the efficacy of an original approach to
fractal dimension computation reflecting the complexity
of the signal described even over short periods, it has
been compared with a recognized marker of nonlinearity,
as the LLE over circadian RR interval series as derived
from ambulatory ECG in a subset of healthy subjects.

2. Lyapunov exponents computation

Given a d-dimensional phase space there are d
Lyapunov exponents which are related to the evolution of
the axes of an infinitesimal d-sphere. If p, is the i axis
the i exponent is defined by:

JX0)
7.0 (1)

The Lyapunov exponents quantify the divergence of
nearby orbits in the different directions of the phase
space. In our study we are interested only in the largest
Lyapunov exponent, defining the maximum orbit
divergence.

To compute LLE from a time series, the phase space
has been reconstructed from the RR interval series by the
Takens method of delays [6]. We reconstructed the phase
space vectors without interpolating the data choosing the
sampling time as the mean RR period and using Takens
formula, as if the RR series was sampled at regular
intervals. The i* phase space vector is:

A= limllog
t 2
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Where s is the RR series, d the phase space
dimension and 7 the delay (multiple of the mean RR
interval). LLE was computed using the Wolf algorithm
[3], a set of initial conditions (two nearby vectors in the
phase space) is observed over time, LLE is evaluated by
computing the divergence of the orbits (3) (see figure 1).
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Fig. 1. The algorithm follows orbits in phase space.
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To verify the functionality of the algorithm it was
applied to some chaotic series (logistic map, Henon map).

LLE =

3. Fractal dimension analysis

The fractal analysis of the time series was performed
with ah original algorithm determining Pattern Fractal
Dimension (PFD) [7], PFD (5) was derived from the
classical Fractal Dimension formula (4) as defined by
Katz [8] where L is the length of the pattern (i.e. the sum
of the distances between successive points of the broken
line), d is the diameter (i.e. the maximum distance
between the first point and any other point of the pattern)
see figure 2.
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Fig. 2. The diameter d and the length L of the pattern.
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The proposed modified algorithm is
log(Z/d)

PFD =1
" logln)

(5)

where n represents the number of samples; the measure
results to be independent from linear shifts, with values
always greater than 1 and smaller than 2.

4. Subjects and methods

RR-interval series have been derived from 24-hour
Holter recordings performed on 55 healthy subjects (34
males, 37+/-4 years, mean+-STD). Each extracted time
series (long about 10e4 points) was analyzed over
consecutive 1024-beat long windows for LLE and both
1024 and 256-beat for PFD, respectively. Both
algorithms where developed entirely under MATLAB
environment. The LLE algorithm requires the
determination of some parameters: the phase space
dimension d, the delay 7. To choose the time delay 1, in
order to examine the nonlinear signal structure, we
searched for the first minimum in the graph of average
mutual information. To evaluate the embedding
dimension d, according to the method proposed by
Grassberger and Procaccia [9], we determined the
correlation dimension of the attractors

The two algorithms were applied to the recorded 24-
hour RR series, thus obtaining two series of findings for
each subject. We applied Spearman’s non parametric test
on the series obtained with equal window length using
the LLE values and the PFD values on 1024-beat
windows. We averaged the 24-hour LLE and PFD values
for each subject. Spearman’s test has been applied on the
whole population.

5. Results

After a few adjustments of the parameters the LLE
algorithm gave correct results for the logistic map (6) for
values of R > 3.45 see figure 3. The algorithm gave
correct values also for the Henon map.

X

n+

1=RXn(1_Xn) (6)

For the RR time series considered, almost always,
LLE values resulted positive (0.1011 +/- 0.031),
suggesting the nonlinearity of the inherent dynamical
system. For the same time series, the PFD values were
greater than one and smaller than two (1.4328 +/- 0.066).
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Fig. 3. Logistic map and LLE.

The boxplots for LLE and PDF are reported in Figure
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Figure 4. Boxplot of PFD and LLE values, derived by RR
sequences in the 55 healthy subjects.

Observing the values of LLE and PFD in the 24-hour
period we noted a similar trend, as reported in Figure 5.

PFD and LLE computed on the same window of the
same registration were plotted together on a scatterplot;
nonparametric Spearman’s test was applied to assess the
correlation between the two measures, evidencing a high
degree of correlation, as shown in Figure 6.

The correlation between the two measures was high
also on the 24-hour mean values of LLE and PFD over
the whole population (Spearman’s p = 0.926, p<0.001,
slope of LLE vs PDF relation = 0.434 with 95% CI:
0.385-0.482).

Fig. 5. RR series, LLE and PFD in healthy subjects,
over the 24-hour period.
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Fig. 6. LLE vs PFD computed for the RR time series of

an healthy subject. Spearman’s p=0.931, p<0.001;
slope: 0.444, with 95% CI: 0.409-0.478.



The correlation between the two measures was high
also on the 24-hour mean values of LLE and PFD over
the whole population, see scatter plot in figure 7.
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Figure 7. Correlation between 24-hour mean values of
LLE and PFD. Spearman’s p=0.934, p<0.001; slope:
0.454, with 95% CI: 0.420-0.483.

6. Conclusions

Two different aspects of signals nonlinearity, i.e. the
inherent orbit dynamics in the phase space and the
convolutedness of the pattern, have been
contemporaneously focused on the same acquired RR
time series. While the positive values for LLE indicate a
nonlinear dynamics, the greater than one values for PFD
evidenced the pattern propension of space filling.

For each of considered healthy subject, a strong linear
correlation between LLE and PFD has been found as the
computing window was shifted along the 24-hour
recordings.

The same result has been found when the mean value
of all the time-varying values of PFD and LLE have been
extracted for the 24 hours recordings.

The strong linear correlation between LLE and PFD
quantifies an intimate link between the system dynamics
and the pattern of the extracted signals (r > 0.9, p
<0.0001). This link suggests the possibility of a direct
evaluation of nonlinear dynamics, even v short time
intervals, exploiting the computationally less expensive
PFD.

The physiological dynamics of heart rate series over
the day-night period in healthy subjects is characterized
by complexity and dynamic chaoticity, well described by
LLE and PFD give reproducible findings, with the
convolutedness of pattern strictly related to the orbits
divergence in the phase space.
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