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Abstract

The routinely wed clinical practice of manual tracing of
the bood pool from short axis cine MR images to compute
efection fraction (EF) is cumbersome, time consuming, and
eperator dependent. In this paper, we present an algorithm
that axtomatically segmenis the left ventricle (LV) wsing the
a priori knowledge of the intensity responses of the tissue
in different MR modalities, along with the LV morphology.
Cur method for the awtomatic computation of the EF
ir based on segmenting the left ventricle by combining
the fuzzy connectedness and the physics-based deformable
model frameworks, We have validated our method against
manual delineation performed by experienced radiologists
on the data from rine asymplomatic volunteers with very
encouraging resulis,

1. Introduction

At present, in routine clinical practice, delineation of
LV is performed manually on a large number of 3D cine
MR images. In the hands of an experienced operator,
this can be quite accurate; however, manual tracing is
very subjective and can be very difficult for those new in
the field, resulting in possible inaceuracies. Thus manual
tracing of the endocardial boundary is labor-intensive, and
time-consuming and invelves considerable inter- and inrra-
abserver variations [1]. These limitations have motivated
the development of automated segmentation techniques for
more accurate and more reproducible LV segmentation.
Automation of LV segmentation poses challenges due to
autormatic localization of the LV in MR scans, the inherently
fuzzy nature of cardiac MR due to heart dynamics, and
the presence of papillary muscles inside the LV blood
pool, Currently there is no known single method available
which, can autormatically localize the LV, segment the fuzsy
ME. with high accuracy without user interaction, and also
take into account the presence of the papillary muscles
in the LV, We have developed a hybrid segmentation
approach for the automatic computation of the EF from
dual contrast (balanced fast field echo - mrbo spin echo)
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short axis cardiac MR data, which combines the fuzzy
connectedness region-based segmentation method with the
L¥-specific elastically adaptive deformable model-based
boundary segmentation method, Although we require an
additional TSE scan at diastole, this can be performed in
Just & single additional breath-hold, and thus does not have
any significant effect on the total scan time. Also, the slight
inaccuracies in the 3D registration due te partial voluming
do not affect the segmentation results, as dual contrast
information is used only for the preliminary estimation of
the LV region. We have compared our method's results
for EF to manual delineation performed by experienced
radiologists on the data from nine asymptomatic volunteers
with very encouraging results. Our woek is inspired by
the work of Metaxas’ and Udupa's research groups [2,
3, 4, 5. Ouwr enhancements and contributions are the
following: 1) segmentation of multi-valued data as opposed
to scgmentation of scalar data is perfomrmed; 2) our
algorithm does not need any manually selected seed arca
for the fuzzy connectedness; 3) we have automated the
fuzzy connectedness method by determining the dynamic
weights for the homogeneity and the pradient energy
functions adaptively; 4) in our algorithm there is no
iteration between the deformable model and the fuzey
connectedness algerithm; 5) we have developed a new
class of forces demved from dual contrast and fuzzy
connectedness data for physics-based deformable meodel,
which is integrated with the customized model for the
LV, by the addition of LV-specific shape constraints, thus
eliminating user interaction at both the LV identification
and the LV scgmentation phases. The remainder of this
paper describes our technigue in detail. In the next section
we explain the theoretical framework for our method.
Section 3 details the implementation specifics, and we
present the results in section 4. Finally we conclude the
paper with a discussion of the merits of our method.

Theoretical framework

2.

Before we explain ow algorithm in detail, we
review some concepts from the fuzzy connectedness and

Computers in Cardiology 2002;29: 193196,



the deformable model fameworks and we detail our
CXbenSIons.

Adaptive Fuzzy Connectedness: The Fuzzy Connectad
Image Segmentation framework developed by Udupa and
his collaborators [3, 6] assigns fuzzy affinities between
two given pixels or voxels in an image or a volume
based on a weighted funetion of the degree of coordinate
space adjacency, degree of intensity space adjacency,
and degres of intensity gradient space adjacency to the
corresponding target object features.  Specifically, the
membership function of the fuzzy spel affinity 15 defined
as: follows: pele,d) = polo,diwi by (Ilch, I(d)) +
wyha[Tie), I{d))L i ¢ # d and pele,e} = 1, where
pofc,d) is the membership function of the spatial
adjacency between spels ¢ and d, T denotes the intensicy
values, and wy and we are free parameters satisfying:
W o+ e 1. For dual contrast neighborhood,

we used functions as supgested in  [3 M
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where Ile) = (iprglc), Jrse(e)) is the two component
intensity vector, my and 5y are the mean vector and
covanance matrix of spels in the intensity space, mg
and §; are the mean vector and covariance matrix of
spels in the gradient magnitode space. With wy and we
kept as frec parameters, the results obtained from fuzzy
connectedness remain highly sensitive to the selection of
the sample region, To overcome this problem, we compute
o and wq as adaptive parameters depending on the ratio
of homogensity and gradient function values at each spel
location: w; = i’ﬁft_ﬂ and e = 1 — wy. This method
of weight assignment takes advantage of the fact that when
the spels are closer to the center of the target object, then
the degree of intensity space adjacency will be higher than
when a spel is near the boundary of the target. As a spel
moves towards the boundary, automatically more weight
is given to the degree of adjacency in intensity gradient
space, thus enabling more accurate boundary definition. In
particular, this method enhances the differcnce in affinitics
attached to the pixels on either side of the boundary, and
thus gives better defined furzy objects without involving
a user to adjust the values of these parameters to find
the best possible combination of wy and ws. To improve
the accuracy of the boundary information, we incorporate
information from both the imaging spectra to compute the
fuzry affinities. Since our refined fuzzy connectedness
attaches much higher affinities to the target object relative
to rest of the image, the nead for complex algorithm
to determine the appropriate threshold to segment the
membership scene is eliminated. In addition, the edge
magnitudes of fuzry affinity images are proneunced which
is erucial for the integration with the deformable moedel.
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Deformable Model: To extract and reconstwuet the LV
surface from the 3D dual contrast MR data, we employ an
elastically adaptive deformable model [2]. We have defined
a new class of forces derived from multi-valued volume
dara that localize salient data feamres. In order to atrract
our model towards significant 3D gradients of the multi-
spectral data I(z, 3. 2} = (hepe(z.p, 2), Irse(z,y. 207
and of the volume fuzzy connectedness data F o derived
with the techniques explained in the previous section, we
construct 2 3D potential function as follows: Pz, y,2) =
M||Pap # 1| + Az||Dasp # F)|, whose potential minima
coincides with the LV surface, The 3D Monga-Deriche
(MD) operator is applied to the multi-valued data and the
fuzzy connectedness data to produce two gradient fields. A
weighted combination of these terms is formed to force the
model to drop into the dzeper valleys and lock onto the LV
surface boundary. Then, the following force distribution
can be derived from this potential function: fiz,y,z) =
“ﬂgi—g:ﬁ%* where the vartable ¢ controls the strength
of the force. Once the model converges towards the LV
boundary, the smoothing effect of the model will allow it
to ignore the data from the papillary muscle. Computation
of the forces at any model point is achieved using tri-linear
interpolation.

3. Ejection fraction computation

Step 1 - Acquire and pre-process the data: Studies
were performed in nine subjects (7mf2f) with normal sinus
thythm, with consent. Contiguous 10mm shore axis slices
were obtained to cover the left ventricle (LV) from the
apex of the ventricla to the mitral valve annulus within a
breath-hold. For this stady, it was assumed that respiratory
motion with the breath-hold would be negligible, Scans
were acquired using a dual TR black-blood sequence
(TE/TR/TSE factor: 80/2hb/23, a single diastolic phase),
and cine bFFE sequence (TETRAip: 3.2/1.6/55 deg; 38-
40 msec temporal resolution) using VCG gating at 13T,
A TSE scan can be performed in just a single additional
breath-hold and thus does not have any significant effect
on the total scon time. All the images were stored in
standard DICOM format, Figs. 1{a,b) depict the data from
the 6th bFFE and TSE slice (subject-1). The data were
analyzed manually by experienced radiclogists and using
the automated analysis in a post-processing workstation.
3D registration of the diastolic bFFE and TSE volumes
is achieved using the MNormalized Mutal Information
algorithm,

Step 2 - Construct spatioc-dual-intensity 4D vector
space: The promise of dual contrast acguisition is that
the dimensionally expanded measurement space will allow
differentiations about the different tissues to be made,
which are impossible in any of the component images. To



bi b ¥ ¥

Figure 1. (ab) Slice & from the BFFE and TSE scans of
Subjeet-1, {¢) Projection of the 4D measurement space on
BFFE-TSE, and (d) x-y planes, respectively. Projection of
the identified blood cluster on the {¢) TSE-BFFE and (f) x-
¥ planes, respectively, Projection of the identified LV and
RV clusters and centroids on the (g) TSE-bFFE and {h) =-
¥ planas, respectively, (i-1) Resulting fuzzy connectedness
data,  {m-p) Projection of the fitted elastically adaptive
deformable model. Fimed deformabile models of the LV
blood pool for (q) Subject-1, (1) Subject-4, and (5} Subject-
O respectively. (1) Estimated centroids for nine subjects
tapped on normalized eirele ftted to the LVs obtained
manually, (u} Coil intensiry fall off in MR, and {v} EFs for
nine subjects using the manual and the automatic methad,

that end, we construet 3 four dimensional measuremen!
space, which combines the spatial and doal conerast
intensity informatior.  The basis components of our 4D
vector are the (x,¥) Euclidear coordinares of the pixels and
their signal intensiries in bFFE and TSE scans. Tissue types
due to their signal intensity responses (Fig 1{c)) and argans
due to their spatial adjacency (Fig 1(d}) form 4D clusters in
this measurement space, thus providing clues for tissue and
orezan classification,

Step 3 - Estimate the cluster center and the
corresponding region for the LV: The three major tissue
typzs prosent in the ME scans are blood, myvocardiom, and
far. For example in Fig. l(c), we do observe a distinct
cluster for blood, a number of clusters where myoecardium
cluster is expected, and a cluster due to background. [n this
specific case, fat being almost negligible doesn'tappear asa
distinet cluster. We employ a eonventional Fuzzy C-means
clustering to cstimate these clusters, Having identificd the
blood cluster (Fig, 1(c)) we can easily classify the blood
in the sean (Fig, ) as the projection of the blood cluster
on the spatial {x-y) plane. The fact thar LV blood appears
brighter compared 1o RV blood in the bFFE, is used to split
the Blood eluster into two clusters - one for the LY and
one for the BV (Fig. 1{g)). The cluster to the right on the
bFFE-TSE plane corresponds to the LV, Projections of these
clusters on spatial (x=-y) plane give centroids and regions
for LV and BV (Fig. I{h)). Omce the LV iz identified this
egrimation is further rectified by using region growing to
keep only the LV region and then we recompute its centroid.
Fig. 1(t) depicts the estimated centroids foe nine subjects
mapped on 2 normalized circle fitted to the LVs, Note that
the LVs of all the nine subjects were identified correctly
with the estimated centroids always well within the LV
blood poal.

Step 4 - Perform Fuzzy Connected LY blood pool
sepmentation: The estimated LY centrond and region are
used as seed and sample statisties for our 3D adaprive
dual conmrast fuzzy connectzdness algorithm. The average
intensity af the LV bload pool drops off as we move towards
the apex of the heart, due to coil intensity fall off (Fig. 1(u)).
We start off with the central slice FCM-based LV estimation
and perform segmenation of the central slice; then we use
the same statstics for the next slice and update the seed
{centroid), the threshold of the membership scene, and the
intensity and gradient statistics to refine the segmentation.

The new threshold for scens membership is computed as:
_ IprevSlice MenpnL V int—currSlice M ean LV ITnd)

= prevSice M eanlV fntensity ?

4 ezpold

erpal
thresh = thresh = e”
In this way, we adaptively propagate the LV bleod pool
segmentarion along the valume and time.

Step 5 - Fit a Deformable Model: An elastically
adaptive LV deformable model[2] is fitted to  the
firzy connectedness and dual conmast data wsing shape



Figure 2. Tmages fom phantom data set (a) plain synthetic
image and images containing the following parameters: (o)
notse, () blur + noise and,{d) blur + noise + background
variation., Plots (e-h) depict results of comparitive study
berween adaptive and conventional fuzzy connectedness
with wy = we = (L3 for various levels (g) blur, (h) noise,
{i) blur plus netse, and (j) blur and noise plus background
vAration.

constraints,  The doemain specific prior knowledee that
LV boundary is non-intersecting, closed and incledes the
papillary s incorporated to optimize fiting of deformable
model to LV boundary (Fig. [{g-5)), The elastcite
parameters of the deformable model are changed adaptively
depending on the gradient values allowing us to overcome
spurious houndaries,

Step 6 - Compute the EF: Compute the gjection fraction
(ratic of stroke volume to diastolic volume) by computing
the volumes of the fitted deformeble models at the end of
systolic and diastolic phase.

4. Results, discussion and conclusion

We have performed a number of experiments to assess
the aceuracy, limitations and advantages of our approach,

Far the first experiment, we desipned synthetic 3D dual
contrast datasets with different levels of noise, blurring,
and gradval intensity change effects (Fig. 2), in order to
assess the bencfits from adapting the weights for fuzzy
connectedness dynamically,

We use the mean values of srength of connectedness
attatched to the ground outh as mewic to compare
the performace of adaptive furry connectedness-based
sepmentation with respect to the conventional fuzey
connectedness-based sermentation. Fig. 2 shows the results
of compartson stwdy of the two methods on phantom
dataset.

Mext, we present the results from the scgmentation of
the data acguired from Subject-1. The segmentation
results using adaptively weighted Fuzey Connectledness for

the LY blood pool are shown in Fig. (=1}, Figs, lim-p)
depict projections of the fitted elastically adaprive shape-
constrained deformabkle madel an the {,:mrn;:}_;pnnding alices,
Figs. 1(g-s} depict the fitted deformable models for subjects
[, 4, and 9, respectively.

The EFs computed for nine volunteers using the
manual method and automated bleod segmentation method
are shown in Fig. l(¥). Our inittal wvalidation results
demonstrate the feasibility of using BFFETSE as mulu-
spectTal data source to generate information necessary for
automated segmentation of the TV

The results show a slight everestimation of the EF using
the automated technique. This is due to lack accuracy
in apical slice scgmentation, we expect to overcome this
by incorporating inforamtion from long axis views. This
justifies the use of deformable model as a last step to
eliminate such spuricus boundarics,
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