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Abstract

An unsupervised method to recognize and classify
QRS complexes was developed in order to create an

automatic cardiac beat classifier in real time. After

exhaustive analysis, four features extracted from the QRS

complex in the time domain were selected as the ones

presenting the best results: width, total sum of the areas

under the positive and negative curves, total sum of the
absolute values of sample variations and total amplitude.

Preliminary studies indicated these features follow a

normal distribution, allowing the use of the Mahalanobis

distance as their classification criterion. After an initial

learning period, the algorithm extracts the four features

from every new QRS complex and calculates the
Mahalanobis distance between its feature set and the

centroids of all existing classes to determine the class in

which the new QRS belongs to. If a predefined distance is

surpassed, a new class is created. Using 44 records from

the MIT-BIH we have obtained 90,74% of sensitivity,
96,55% of positive predictivity and  0.242% of false

positives.

1. Introduction

Critical care patient monitoring has been a constant

challenge to Biomedical Engineering, especially for those

studying the cardio-respiratory system. With the

advancement of micro-processed systems, it has become

possible to implement reliable automatic cardiac

arrhythmia analyzers in cardiac monitors. 

The classification of beats, one of the steps of this

analysis, intends to identify alterations in the cardiac beat

pattern through the analysis of the characteristics or

features of the QRS complexes.

There are three main obstacles to overcome in order to

be implemented in cardiac monitors: real time operation,

low processing cost and independence from the selected

leads. 

This study developed an unsupervised algorithm to

recognize and classify QRS complexes in order to

overcome those obstacles. 

2. Methodology

The database of the Massachusetts Institute of

Technology and Beth Israel Hospital (MIT/BIH) was

used for development and analysis of the algorithm, since

it is one of the databases indicated for performance

evaluation of ventricular arrhythmia detection systems by

the Association for the Advancement of Medical

Instrumentation, AAMI/EC57 [1]. This database has 48

records, each 30 minutes long, in two ECG channels. In

compliance with the recommendation, the records with

“paced beats” were excluded, since this algorithm does

not possess a pacemaker detector.  

The records were adapted to meet the requirements of

the monitor employed in the study (Dixtal DX2010),

using the software xform, available in the MIT-BIH

database CD-ROM. Sampling frequency was altered

from 360Hz to 250Hz, signal gain from 200 adu/mV

(analog to digital unit /mV) to 160adu/mV, signal

resolution from 11 bits to 12 bits and baseline from 1024

to 2048.

Afterwards the most adequate features of the QRS

complex were searched to be used in classifying beats in

real time. Quality of classification features is a key factor

in determining performance of an automatic cardiac beat

classifier, discriminating different morphologies and

allowing the creation of different arrhythmia classes.

With this purpose in mind, the time domain extraction of

QRS features [2] was chosen because of its low

processing cost, which allows easy implementation in

real time. 

From a set of nine features extracted from the QRS

complex, Costa and Moraes [3] concluded, with a

reduced database, that the use of only four features offers

the best compromise in terms of processing cost and time

domain extraction performance. Those features which

could be extracted independently from the chosen lead

were then selected. The following features were

concluded to be the best set for the creation of an

automatic cardiac beat classifier in real time:

1. width W of the QRS complexes, represented by the

number of samples which contain the QRS complex;

2. total sum of the areas under the positive and negative

curves, calculated by the expression:     
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where N is the total number of samples in the QRS

complex, i is the position of the sample in relation to the

beginning of the complex, x0 is the first sample and xi is

the sample;

3. total sum of the absolute values of sample variations

in the QRS complexes:
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4. total amplitude of the QRS complexes:
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The extraction of the features of the QRS complex was

made from records generated by a QRS delineator

software. The ECG signals in these records had a

bandwidth (0.7-17Hz at –3dB) limited by a band pass

filter proposed by Ligtenberg and Kunt [4], in order to

reduce noise and EMG, as well as baseline wandering.

Thus, the features were obtained through the samples of

the QRS complex and the notations generated by the

delineator software.

For the following step the features chosen to form

feature clouds were used in a 4-dimension space, each

cloud representing a feature class.  

The value of r in the equation

r
2
 = (x-mx)` Cx

-1
(x-mx) (4)

is called the Mahalanobis distance from the feature

vector x to the mean vector mx, where Cx is the

covariance matrix of x; it can be demonstrated that

surfaces in which r is constant are ellipsoidal with center

in mx. The Mahalanobis distance can be used in a

minimum distance classifier as following (Figure 1): be

m1, m2, ..., mn the centroids of the n classes, and be C1,

C2,..., Cn the corresponding covariance matrixes. An

feature vector x is classified by measuring the

Mahalanobis distance from x to each of the centroids, and

by attributing x to the class in which the Mahalanobis

distance is minimum [5].

It can also be proved that (4) is the matrix

generalization of the scalar expression:

R
2
 = (x-m)*(x-m)/s

2
 = [(x-m)/s]

2 (5)

In order to use the Mahalanobis distance as a

minimum distance classifier the involved features must

have a normal distribution. A study was therefore made

to define the distribution of probabilities of the chosen

QRS complex features. Some database records were

selected for this evaluation; the database records were

extracted and used to generate histograms with  MatLab.

The algorithm delineates in real time each new QRS

complex detected and extracts the four features. The next

step is to calculate the Mahalanobis distance in relation to

the centroids of the pre-existing classes. The new beat is

included in the class for which the Mahalanobis distance

between the centroid features and the beat features is

smallest. A new class is created every time the features of

a new beat are at a larger distance in relation to all

existing classes than a pre-determined limit. Therefore,

the Mahalanobis distance indicates which class each beat

belongs to or if there is need to create a new class. 

A very important characteristic of the algorithm is that

the centroids are self-adjustable, allowing an interactive

dislocation of the feature clouds. For each new beat that

is incorporated in a class a re-calculation of the class

centroid features is performed, taking into consideration

its previous values and the feature values of this new

beat. Moreover, the algorithm also allows the exclusion

of classes that contain few beats and/or remain without

new occurrences for a long time. These are excluded in

order to minimize processing costs.

An initial learning period of forty seconds was

determined as a way to enhance the sensitivity of the

algorithm. During this time, the maximum distance

determined for the creation of a new class is reduced so

that more classes are created and the number of false

positives is reduced.  

It is important to notice that the whole procedure

described before is performed only in one channel and

does not depend on the chosen lead. 

All tests were performed following the

recommendation of the AAMI/EC57 [1]. Therefore, new

notation files were created during the test period,

containing beat notations generated by the proposed

algorithm. A beat-by-beat comparison for each of the 44

records in the database was made using the software bxb

from the MIT-BIH database CD-ROM; the original

notation files from the database were confronted with the

ones generated by the algorithm. The metrics employed,

related to the VEBs (Ventricular Ectopic Beats), were:

sensitivity, positive predictivity and false positive index.

Another important information is that the branch block

beat types were considered normal for test purposes. The

fusion beats, however, were considered normal or

ventricular at times, according to the class they were

Figure 1. Mahalanobis distance in a minimum distance

classifier.
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Figure 2. Distribution of the normal beat features for
record 119. Clockwise from the upper left corner: W,
AA, A and VS.

placed. Moreover, only the detected and delineated  beats

were considered, since the purpose of the tests was to

evaluate classifier performance. 

3. Results

In all cases (records 116, 119, 201, 208, 213 and 233)

the features, both for normal beats and Multiform

Premature Ventricular Contraction (PVC), had a

distribution similar to normal (Figures 2 and 3).

Therefore, the Mahalanobis distance could be used in the

form (5) as a classification criterion.

It is important to notice that the feature Width, in

Figures 2 and 3, did not present a well characterized

distribution because its discretization in a few points did

not allow for good characterization. Even with the use of

records with a larger number of beats the result is not

expected to be better, since distribution would remain in

the range presented.

Table 1 presents the test results for the algorithm in

different amounts of the MIT-BIH database records. 

The first line presents the metrics for all 44 records in

the database. With the exception of record 207 (second

line in Table 1), a considerable increase in sensitivity can

be seen, although the other metrics do not present

significant changes. This result was expected,

nonetheless, since record 207 contains sections of

ventricular fibrillation, which directly impairs the

sensitivity of the VEBs. Strictly following the

recommendations of AAMI/EC57 [1], the record 207

wouldn't even be included in the tests.

In the third line of Table 1 the record 203 was

excluded from the total 44 records, resulting in a

significant increase in both sensitivity and positive

predictivity, besides a marked decrease in the VEB false

positive index. The exclusion of this record is due to the

fact that its specific chosen features do not offer good

performance for beat classification.

The estimated error [6] with the use of these four

features in record 203 is 7.35%, too high when compared

to the other records, around 4.00% at most. Figure 4

shows the output of the bxb software for record 203,

where beat classification is shown (in lower case letters

for the notations generated by the computer and in capital

letters the notations from the original notation file).

Sensitivity, positive predictivity and VEB false positive

index are also shown. 

At last, the fourth line of Table 1 shows the VEB

indexes for 42 records of the database after the exclusion

of the critical records 203 and 207. It shows, therefore, a

large increase in VEB sensitivity and a small increase of

the other indexes when the two mentioned records are

excluded.

Figure 5 presents a two-dimensional graph generated

by mapping [7] the four features extracted from the QRS

complex for record 221 of the MIT/BIH database with

the software gnuplot. Record 221 presents only two

classes of beats: Multiform Premature Ventricular

Contraction (PVC) and normal beats (NORMAL).

Classification was performed with the proposed

algorithm. Note that the data related to NORMAL and

PVC formed well defined clusters, and only one PVC

beat was grouped with NORMAL. 

An adaptative method is used so the algorithm will not

need to learn a pattern again after the initial learning

Figure 3. Distribution of the PVC features in record 119.

Clockwise from the upper left corner: W, AA, A and VS.

Table 1. VEB Indexes of the classifier (%).

Number of

records

Sensitivity Positive

Predictivity

False

positives

44_ 90.74 96.55 0.242

43_ 92.42 96.60 0.242

43* 93.22 97.08 0.203

42_ 95.05 97.13 0.203
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period, so that the normal pattern (which will probably

present variations in morphology after a long time of

evaluation) continues to be classified correctly. Another

advantage of the algorithm is that it does not establish a

maximum number of patterns to be created, so that

several classes of multiform ventricular beats can be

created. Nonetheless, not more than 18 classes were

generated using the MIT/BIH database (record 207),

showing the algorithm is finding a reasonable number of

patterns despite its malleability.  

The use of the Mahalanobis distance allowed the

software to use features with completely different metric

values without differentiation. Although it brings benefits

such as the use of one-dimensional threshold for the

distinction of limits, this may bring consequences such as

seen in record 203 where classification was done

erroneously because distinct class features were placed in

the same class in the general result. 

4. Conclusion

An algorithm to classify QRS complexes in real time

was presented in this study with the purpose of being

implemented in cardiac monitors. For this purpose, it was

necessary to search for a non-supervised classification

method for cardiac beats with low processing cost,

independence from the selected lead and self-adjustment

features.

Another important factor to be noted is that its simple

approach, when compared to more costly computing

methods such as those using neural networks or fuzzy

logic, makes implementation in real time more feasible. 

All considered, the algorithm is effectively useful and

can be implemented in commercial cardiac monitors with

arrhythmia analysis characteristics, even fulfilling their

requirements of real time processing. 

A future project will be the development of a labeling

algorithm so that, once classes are separated, they can in

turn be classified themselves. Therefore the algorithm

will not only identify several patterns existing in an ECG

signal, but also be able to classify them.
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Figure 5. Graph generated by mapping the four features

extracted from record 221 in a 2D space according to

algorithm classification

Figure 4. Output of the bxb software for record 203.
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