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Abstract

Simulation of wavefront propagation in the whole heart
requires significant computational resources. The growth
of cluster computing has made it possible to simulate
very large scale problems in a lab environment. In this
work, we present computational results of simulating a
reaction diffusion system of equations of various sizes on
a Beowulf cluster. To facilitate comparisons at different
spatial resolutions, an idealized ventricular geometry
was used. The model incorporates anisotropy, fiber
rotation, and realistic membrane dynamics to determine the
computational constraints for the most detailed situations
of interest. Three meshes with mesh spacings of �����	��
 ,� �
�	��
 , and ���	�	��
 , corresponding to roughly ��� ,� � , and ����� nodes in the computational domain,
were considered. The results show that good parallel
performance is possible on a cluster up to 32 processors.

1. Introduction

Sophisticated computer simulations are being used to
investigate the factors that generate and sustain life-
threatening heart rhythms such as ventricular fibrillation.
For models with domain sizes that approach the size of
the human heart, the computational resources required
to perform the simulation can exceed that found on a
typical workstation. A domain comprising only 16M nodes
with a membrane model of 5-8 state variables can use
over 8GB of memory. To overcome these computational
constraints, investigators have made use of commercial-
class supercomputers such as the Cray YMP/T90 series
and the IBM SP. While these supercomputers still provide
outstanding performance, they are expensive and not always
available to the average investigator.

An alternative to using commercial supercomputers is
a Beowulf cluster that involves several closely networked
workstations. Such clusters have become increasingly
popular, but have been viewed as being too experimental
to handle the algorithmic and communication demands
involved in solving the reaction-diffusion equations

used to model electrical dynamics in cardiac muscle.
Recent advances in hardware and software, however,
have made cluster computing attractive for large scale
simulations. In this paper, we describe the computational
performance of a model of wavefront propagation in
domain size approximating the human heart. To
investigate the computational needs and test the cluster
environment, an idealized ventricular geometry, with
non-uniform, rotational ansiotropy and various models
of cardiac membrane ionic fluxes was used. The
idealized geometry permitted different grids with the
same shape but different elements sizes to be studied.
The simulations were performed using CardioWave, a
modular simulation system for the Bidomain Equations
[1], developed in our laboratory. The results show
that when using a distributed memory parallel approach,
the computational and memory resources of multiple but
otherwise independent workstations can be used efficiently
up to 32 processors for a domain size of 16 million
computational nodes.

2. Methods

CardioWave was developed to solve the system of
bidomain equations on a parallel computer. The specific
have been described previously [1]. Unlike other simulators
of wavefront dynamics in the heart, Cardiowave is not a
single, monolithic program, but rather a set of program
modules related to time integration, output, membrane
kinetics, matrix solvers etc, from which the user selects to
create a custom executable for the problem of interest. In
the typical simulation described in this work, the explicit-
monodomain time-integrator module, the LR-1 membrane
dynamics module, the simple stimulus and output modules
were selected to create simulator. An additional module
was selected to instruct the simulator that the execution
would be performed in parallel. As such, the same set of
modules can be selected and compiled on any distributed
parallel computer without modification.

To test the parallel performance, an idealized geometry
with anisotropic properties was used such that diffferent
grid spacings could be considered while minimizing the
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Table 1. Mesh Parameters
spacing # Nodes Memory

( ��� ) (Tissue) (MB)
378 1035005 320
238 4138452 1279
150 16511310 5102

distortion to the domain shape. The ellipsoidal geometry
is based on that given by Colli-Franzone [2] et al. In this
model, the fiber angles are described analytically. The
model includes both fiber rotation through the myocardial
wall as well as the spiralling of the fibers from apex to base.
Repeating the coordinate description from their paper:

� � �����! �"$#!%'&("$#!%*)
+ � �����! �"$#!%'&(%-,/.0)
1 � 2	�3�
 �%4,/.5&

where �����! 6� 7
8:9<;=7
8:>�� and 2	�3�
 ?� @*8 @A;CBD8 E
� .
Coordinates, as well as � and 2 , are in 2 � ; � goes from
0 to 1, endocardium to epicardium, respectively. For their
model, they allowed & to vary from F5G	HJI�K to HJI�K . In our
model, we based the cut-off on the 1 coordinate directly; 1
goes from B to 9 , base to apex, respectively.

The computational domain is generated by laying a
regular grid over a box surrounding the Colli-Franzone
geometry. Each vertex in this regular-grid domain is
then tested to see if it is inside or outside the surface
of the ventricle. Those points that lie within the tissue
are tagged for possible inclusion in the final output mesh.
Only elements that are associated with 8 tagged nodes are
included in the final output mesh. The resulting surface is a
stair-step mesh approximating the ellipsoidal geometry.

Any discretization scheme [3] can have problems at
edge and corner nodes when there is anisotropy and fiber
curvature present. This can cause small current sources
to appear at those points. Given that a stair-step grid has
many such corners, we assigned isotropic conducitivies at
the surface nodes only in order to attenuate this effect.

Three stairstep meshes were constructed that were
each @ML larger than its predecessor. The final mesh
specifications are shown in Table 1. The mesh spacings
378 to 150 microns, and from 1 million to over 16
million nodes in size. The ”Memory” column in the table
indicates the size of the output matrix-file that was stored
on disk. The largest mesh occupied over 5 gigabytes of
disk space. Although large, the mesh file only needs to
be created once and can be used for other simulations (eg.
different membrane models, different stimulus protocols,
rotor formation, studies of re-entry, etc.).

Three membrance models were used: the Luo-Rudy (LR-
1) model [?], the Pandit model [4] and the Rogers and
McCulloch [5] model.

All simulations were performed on a custom ”Beowulf”
cluster in our laboratory, developed by Linux Networx.
This cluster consisted of 16 dual-CPU machines with
AMD 7!8N9 G
OQP 1 processors and 7 OQR of memory each.
All of the machines were connected by a gigabit-ethernet
network. CardioWave uses the industry-standard MPI
communications library; the free, open-source MPICH [6,
7] implementation from Argonne National Labs was
installed on the cluster.

3. Results

A series of simulations were performed on the cluster
using the LR-1 model on domains of various sizes. 1000
time steps were simulated to obtain the run-time values.
Table 2 gives the run-time and memory usage results for
the three meshes (each being @SL larger than the next) on 1,
4, and 16 CPUs of our cluster. Given that a given processor
had only B'8:9 OQR of memory, all meshes would not fit on 1
or 4 CPUs (see Table 1 for a rough memory estimate of the
mesh alone, without allocating the nodal voltages and state
variables).

Analysis of Table 2 provides a measure of the overall
parallel performance of the code. Going down the columns
(problem size is fixed but the number of processors is
increasing), we see a steady decline in run-time as expected.
Going from 1 to 4 CPUs in the 1M mesh, for example,
the code runs the same problem almost G 8 @ times faster.
This decrease in run-time is called the ”speed-up” of the
parallel program. From 1 to 16 CPUs on the 1M mesh,
we see a speed-up of nearly 7 G 8 E . From 4 to 16 CPUs on
the 4M mesh, we see a speed-up of G 8 K . The near linear
speedup with the number of processors indicates that we are
efficiently utilizing the CPU power of the extra machines.
Additional simulations of the 7�9�B ��� (16M) mesh with 32
CPUs ran in G B
E�>�8:>
9!T$U�2 , nearly 7!8 K @ML faster than the 16
CPU runs.

If we compare the 1 CPU-1M mesh time to the 4 CPU-
4M mesh time, we see that they are nearly identical (less
than 7	V difference). This is to be expected since we have
quadrupled the amount of work (1M to 4M nodes), but we
have also quadrupled the amount of computational power.
We can also compare these times to the 16 CPU-16M mesh
case, where again we have increased the amount of work
but exactly increased the computational power. All three
run times are within 9!V of each other indicating that we
are efficiently using the additional memory of the extra
machines.

3.1. Alternate membrane models

Since CardioWave uses a modular approach, simulations
were also performed using different membrane models
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Table 2. Parallel Performance Metrics
# W�X�Y
Z�[ \�W
Y
Z�[ ]�^�_
Z�[

1M Nodes 4M Nodes 16M Nodes
Num. Memory Run-Time Memory Run-Time Memory Run-Time
CPUs (MB/cpu) (sec) (MB/cpu) (sec) (MB/cpu) (sec)
1 489 5407.83 n/a n/a n/a n/a
4 136 1595.39 489 5463.50 n/a n/a
16 48 398.38 136 1430.21 488 5638.56

(Pandit [4], Rogers-McCulloch [5] (RM) model, and LR-1
with table look-up for the computationally expensive ` anda

terms in the state equations (referred to here as LR-look-
up). Compiling a new simulator from scratch, with a new
membrane model, required a negligible amount of time.

These three models represent several different conceptual
approaches for describing the membrane ion fluxes. The
RM model is a mathematical abstraction that uses only 1
state variable in addition to the voltage. It reproduces the
qualitative behavior, and does not produce a very realistic
transmembrane potential waveshape as output. The Pandit
model is an experimentally derived model that utilizes 25
state variables to describe ion fluxes through the membrane,
based on experimental patch clamp data. Clearly, solving
the 25 state variable equations require significatly more
computational work than with RM. The LR-look-up model
is analagous to the LR model described previously, but
precomputes the ` and

a
terms for each ionic current.

By creating a table of values and using lookup, the cost
of performing the floating-point operations to compute the
functions is reduced since only a few integer computations
and memory references are required. As before, 1000 time
steps are simulated. Only the largest mesh (16M nodes) was
used on 16 processors of the cluster.

Due to its computational simplicity, the RM model
required only ]�W
W!b�ced�f of run-time and WgX	^!hji of
computer memory per processor. Thus, it is nearly k*lN\�m
faster to compute using RM than using the regular LR
model, and uses about W
_gn less memory. This model is
useful for quickly gaining insight into how geometry and
tissue properties that might affect re-entry.

The Pandit model required approximately ]�_
o!b
o�ced�f of
run-time and X�o']�hji of memory per processor, or nearly
\�m slower than the LR model, and needing b�\!n more
memory. Similar detailed membrane models give access to
a number of ionic currents that could be used to investigate
membrane biology, such as drug interactions on wavefront
propagation.

Finally, the LR-look-up model required \�Y
W�\
ced�f of
run-time, a nearly \�m speed-up over regular LR, and
yet required almost no extra memory (the tabulated data
took approximately \�_!_
pqi , compared to k�Y
Y�hji , per
processor). While each model is somewhat unique, many

current membrane models, including the Pandit model,
could potentially use a similar look-up table approach at
least for some of the internal functions.

4. Conclusions

The results demonstrate that cluster-based parallel
computing can provide the computational resources to
tackle large, realistic problems in cardiac electrophysiology.
The simulation using the most detailed membrane model
(the Pandit model) involved a grid with ]�^	_	Z�[ spatial
resolution, full anisotropy and fiber rotation, This
simulation needed approximately ]ek!rQi of computer
memory, much more than is available on a commodity-
class workstation. The use of parallel computational
techniques allows us to efficiently spread the memory and
computational load over multiple machines. For a fixed-
size problem, we see speed-ups of ]�W'l b on 16 CPUs ( Y�^!n
of optimal). When we run larger problems, we see even
better parallel efficiency ( o
o�n of optimal for the 16 CPU-
16M run). It is important to emphasize that even with
parallel processing, the simulation times are tractable but
can still be very long. Assuming a fixed time step of ]�_	ZSc ,
a simulation of one second of activity for the most detailed
model considered here (Pandit, 16M nodes and no lookup)
would require about 7 days on 32 processors.

While constructed from a regular block. the stair-step
mesh is stored internally as an irregular grid. Similarly,
since the model incorporated fiber curvature and rotation,
the conductivity tensor was computed and stored separately
for each location in the grid, just as one would need
for a truly anatomically accurate model. We adopted
this approach since it represented a future direction for
models where both the geometry and fiber descriptions
are obtained from MRI data. The results show that with
proper segmentation schemes, a very large-scale model
with realistic geometry, realistic membrane dynamics, and
full fiber rotation can be rapidly constructed at MRI
resolution and simulated on 16-32 networked computers, a
resource that is generally available in many laboratories.
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