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Abstract

Two types of measurements are usually performed from
high resolution ECG recordings: (a) static parameters
derived from the signal-averaged QRS complex and (b)
variant markers derived from beat-to-beat recordings. It
is known that an increased QRS micro-variability and
ventricular late potentials are associated with an increased
risk for malignant arrhythmias. However, the diagnostic
power of the singular parameters is limited. In this study
we investigated the diagnostic ability of a decision fusion
of both variant and static high-resolution ECG parameters
with radial-basis-function (RBF) networks. Continuous
and signal-averaged ECGs were recorded from 51 healthy
volunteers without any structural heart disease and no
cardiac risk factors and from 44 patients with coronary
heart disease and ventricular arrhythmias. Beat-to-beat
micro-variability measurement of the QRS complex and the
ST-T segment was based on 250 consecutive sinus beats
per individual. Signal-averaged ECGs were analyzed
with the Simson method (QRSD, RMS, LAS). Two RBF
networks were trained. One on the three signal averaged
parameters and one with the 141D variability vector. The
two soft decisions from each RBF network were then
combined by average fusion and maximum detection into
a final crisp decision which resulted in an unusually high
discriminative accuracy.

1. Background

High-resolution electrocardiography is used for the
detection of fractionated micropotentials, which serve as
a non-invasive marker for an arrhythmogenic substrate
and for an increased risk for malignant ventricular
tachyarrhythmias. Beat–to–beat variation of cardiac
excitation and depolarization has been associated with
electrical instability and an increased risk for arrhythmias
[1]. Rosenbaum et al. [2] have shown that increased beat–
to–beat microvariations of the T–wave, although visually
inapparent, are associated with a decreased arrhythmia–
free survival. Their method to quantify periodic electrical

alternans of the T–wave amplitude has gained growing
clinical acceptance as a non–invasive, electrocardiographic
risk marker. Earlier high–resolution electrocardiographic
studies already demonstrated periodic and non-periodic
behaviour of ventricular late potentials at the terminal QRS
[3–6]. Previous work of our group showed a significantly
higher beat–to–beat variation of the duration of the filtered
QRS [7] and an increased total beat–to–beat microvolt
variation of the QRS [8] among patients with an increased
risk for ventricular tachycardias.

The aim of this study was to utilize and evaluate the
combination of static (signal-averaged) and dynamic (beat-
to-beat) markers solely based on the QRS complex for
subject discrimination.

2. Subject data

We compared a group of 51 healthy subjects (group
A) with 44 cardiac patients at a high risk for malignant
ventricular arrhythmias (group B, VT patients). All
healthy volunteers (mean age 24.0 � 4.1years) had a normal
resting ECG and a normal echocardiogram, and no cardiac
symptoms or coronary risk factors. The patients with a
high–risk for malignant ventricular arrhythmias (mean age
61.2 � 8.9 years) were selected from our electrophysiologic
database. Inclusion criteria were the presence of
coronary artery disease, a previous myocardial infarction,
a history of at least one symptomatic arrhythmia, and
inducible sustained ventricular tachycardia ( � 30 seconds)
at electrophysiologic testing. Patients with bundle
branch block or atrial fibrillation were excluded. All
patients of group B underwent coronary angiography and
programmed right ventricular stimulation due to clinical
indications. Stimulation was done from the right apex
and the right outflow tract. The stimulation protocol
included up to 3 extrastimuli during sinus rhythm and
at baseline pacing with a cycle length of 500ms, and a
maximum of 2 extrastimuli at baseline pacing with cycle
lengths of 430ms, 370ms, and 330ms. Group B consisted
of 10 patients with single vessel disease, 17 patients
with double vessel disease, and 17 patients with triple
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Signal-averaged ECG parameters
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Figure 1. Parameters from the signal-averaged high-
resolution ECG: Duration of the QRS complex (QRSd),
and amplitude (RMS) and duration (LAS) of the terminal
portion of the QRS which are used for ventricular late
potential analysis.

vessel coronary artery disease. Nineteen patients had a
previous posterior infarction, 14 patients had a previous
anterior infarction, and 11 patients had both a previous
anterior and a previous posterior infarction. Mean left
ventricular ejection fraction was 44.0% � 14.9%. Forty-
one patients had a documented episode of spontaneous,
sustained ventricular tachycardia or ventricular fibrillation.
Out of the remaining three patients, 1 patient had syncopes
and non–sustained ventricular tachycardias on Holter
monitoring, and 2 patients had syncopes of presumed
cardiac origin.

3. ECG recordings

High–resolution electrocardiograms were recorded dur-
ing sinus rhythm from bipolar orthogonal � , � , 	 leads
using the Predictor system (Corasonix Inc., Oklahoma,
USA). A/D resolution was 16 bit with an antialiasing
filter (0.05-300Hz). Before ECG recording antiarrhythmic
drugs were stopped for at least four half–lives. The skin
was carefully prepared and recordings were done with
the subjects in reclining position in a Faraday cage. For
signal-averaged recordings the sampling rate was 2000Hz.
The three leads were combined into a vectormangnitude
signal 
���
 ������������	�� and bidirectionally filtered
with a 4 pole Butterworth filter (40-250Hz), see Figure
1. From this signal the three features of ventricular
late potential analysis, QRS duration (QRSd), and the
duration (LAS) and amplitude (RMS) of the terminal
portion of the QRS complex were extracted. For the
beat–to–beat recordings of 30min duration the sampling
rate was reduced to 1000Hz. QRS triggering, reviewing
of the ECG, and arrhythmia detection was done on a
high–resolution ECG analysis platform developed by our
group [9]. The three leads were summed into a signal
�����������	 . From each recording 250 consecutive
sinus beats preceded by another sinus beat were selected
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Figure 2. Diagram of the spline–filtering procedure. The
upper left panel (A) shows both signals, the QRS–complex
(sum of the three leads) and the cubic spline. A zoom–in
makes the differences more apparent. The right panel (B)
shows the calculation of the variability vector.

for subsequent beat–to–beat variability analysis. In a first
step the signals were aligned by maximizing the cross–
correlation function [10] between the first and all following
beats. Prior to the quantification of signal variability
the beats were pre-processed to suppress the main ECG
waveform, bringing the beat–to–beat micro-variations into
clearer focus. To achieve this, the individual signal
was subtracted from its cubic spline smoothed version
(spline filtering, spline interpolation through every seventh
sample using the not–a–knot end condition) [11], compare
Figure 2 panel (A). This method resembles a waveform
adaptive, high–pass filtering without inducing phase–shift
related artefacts. Next, for each individual beat the
amplitude of the difference signal was normalized to zero
mean and a standard deviation of 1 � V, see Figure 2 panel
B. Beat–to–beat variation of each point was measured as
the standard deviation of the amplitude of corresponding
points across all 250 beats. For the QRS we used a
constant analysis window of 141 ms which covered all
QRS complexes of this series, thus resulting in a 141
dimensional feature vector [8].

4. RBF classifiers

In the classification scenario a neural network performs
a mapping from a continuous input space � ( ���  "! ) into
a finite set of classes �#�%$'&�(*)'+'+,+-).&0/21 . In the training
phase the parameters of the network are determined from
a finite training set: 34� $658709:).&�9<;'= �>� ?@),+'+'+BAC1 ,
each feature vector 7D9�E%�  GF is labeled with its class
membership &H9IEJ� . In the recall phase further unlabeled
observations 7�EK�  F are presented to the network which
estimates their class membership & . Here, we restrict
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ourselves to Gaussian basis functions [12] of the type given
in Figure 3. In our classification scenario the number of
output units corresponds to the number of classes (1 ofL

coding). Categorization is performed by assigning the
input vector M the class of the output unit with maximum
activation.
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Figure 3. Architecture of the radial basis function
neural network with Gaussian basis functions gihkjl h6m Monpj qsr<tvuxwzyZy {6|@}2~cyZy ��,� �~ � and linear output units�i� m Mon�j ����2���D��� � l � m MonJ� ����� , ���s����� denotes the
Euclidean norm.

5. Fusion methods

There are different fusion methods for combining
features:

1. Data fusion is the combination of a set of different
feature vectors, e.g. concatenating feature vectors into a
single feature vector.
2. Decision fusion is the combination of a set of classifier
decisions based on different feature detectors into a single
decision.

Basically, two different types of classifier combination
can be distinguished [13]:

1. Combination with a fixed combination rule or mapping,
for instance averaging or multiplying the classifier outputs.
2. Adaptable combination mappings, for instance decision
templates or naive Bayes rule. For this, an additional
optimization procedure is necessary. Typically, some kind
of confusion matrix is calculated based on an extra dataset.

Given � different extracted features, a set of classes���x� �'�'� �c�G� , and � probabilistic classifiers �¡  � �'�'� � �£¢ .
The outputs of the � different classifiers (one per feature)

are called decision profile and are given by

¤ � m8¥ n�j
¦§§§§¨
�    �,�'� �  h �'�'� �  ©�'�'�k�,�'�k�,�'�ª�'�,�^�'�'��<«  �,�'� �6«h �'�,� �<«©�'�'�k�,�'�k�,�'�ª�'�,�^�'�,��­¬  �,�'� � ¢h �'�,� � ¢©

®X¯¯¯¯° (1)

here
�

the number of classes, and � « m8¥ « n±j � « jm � «  � �,�'� � � «© n is the output of the ² -th classifier with � «h´³µ ¶·�'�s¸
all ² and ¹ , and � h � «h j � all ² .

Combination of the classifier outputs can be achieved
through several fusion mappings, e.g. averaging, which we
apply here. The classifier outputs is then given byº� h�m8¥ n�j �� ¢» « �   � «h � (2)

6. Average fusion of RBF networks

The decision fusion of the ¼ -dimensional and the
�'½@�

-
dimensional data set was performed as follows: For each
dataset an independent RBF network with was constructed
(one with ¼ input neurons and one with

�,½·�
input neurons),

both networks had the same number of hidden neurons
(prototypes) and output neurons each. The RBF neurons
used the function

l h6m Mon and the output neurons were linear
with the threshold value.

The networks were trained independent according to the
following steps:
1. Set initial prototype locations with a ¾ -nearest
neighbor algorithm with ¾%jÀ¿ : Select a randomly chosen
data point from the training set and check if the majority of
the ¿ nearest neighbors would be classified right according
to the class label of the observed data point.
2. Train prototypes (hidden neurons) with OLVQ1 (the
initial learning rate was set to

¶ � ¼ , the number of learning
steps was Á ¶ times the number of prototypes following a
recommendation of Kohonen).
3. Initialize weights between hidden neurons and output
layer with uniformly distributed random values in the
interval m w ¶ �Z¿�ÂÀwÄÃ �B¶ � ¿xÂ�wÄÃ�n .
4. The size of the RBF centers were initialized with a
value proportional to the mean Euclidean distance to the¼ nearest prototypes with a lower boundary of

� ÂÅwÇÆ ¶ .
5. The network was fully trained with
6. Armijo line-search following [14], [15], [16] with
parameters È­É�j ¶ � Æ , a step lower bound of

¶ � ¶�½ , a
maximum of Æ ½ line-search (armijo) steps and a maximum
of
�,¶x¶

overall training iterations.
Now the corresponding outputs (matching the classes) of
the two networks were combined via average fusion and
final crisp decision was generated through a maximum
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Decision fusion beat-to-beat and signal averaged data
Acc Sensi Speci

Re-val 95.6% Ê 0.44% 90.5% Ê 0.96% 100% Ê 0.0%
Cross-val 90.4% Ê 1.9% 83.4% Ê 2.6% 96.5% Ê 2.2%

PPV NPV
Re-val 100% Ê 0.0% 92.4% Ê 0.69%

Cross-val 95.4% Ê 2.9% 87.1% Ê 1.9%

Table 1. Results of the average RBF fusion of two
networks with 14 prototypes. Acc: accuracy, Sensi:
sensitivity, Speci: specificity, PPV: positive predictive
value, NPV: negative predictive value, Re-val: training and
test on the same data, Cross-val: 10-fold cross-validation
(mean Ë stdv, 10 repetitions)

detection. All re-validation and a Ì,Í -fold cross-validation
runs were repeated 10 times with varying prototype
numbers from 2 to 20 for both networks. Table 1 gives
the results above 90% cross-validation accuracy with the
least number of prototypes.

Data fusion beat-to-beat and signal averaged data
Acc Sensi Speci

Re-val 89.5% 86.4% 92.2%
Cross-val 87.3% Ê 0.61% 86.3% Ê 0.44% 88.1% Ê 1.09%

PPV NPV
Re-val 90.5% 88.7%

Cross-val 86.3% Ê 1.08% 88.2% Ê 0.38%

Table 2. Classification results for the linear model of
Kestler et al. [17]. Re-val: training and test on the same
data, Cross-val: 10-fold cross-validation (mean Ë stdv,
1000 repetitions)

7. Conclusion

Soley based on features extracted from the QRS a
remarkable classification accuracy of slightly over 90%
was attained in the discrimination of healthy from
VT/VF patients. Interestingly, this even tops the
performance achieved in a earlier study of data fusion
including the beat-to-beat variability index derived from
the ST-T segment. This results also indicates that the
variability vector of the QRS used in this investigation,
containes additional information not utilizeable in the QRS
variability index.
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