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Abstract

In this paper we compare zero and first order Tikhonov
and Generalized Eigensystem (GES) regularization for
estimating the endocardial potentials from measured
potentials on a noncontact probe. In all cases,
the Composite Residual Error and Smoothing Operator
(CRESO) was used to estimate the regularization parameter.
In this limited study the use of higher order regularization
produced larger average correlation coefficients between
the estimated and measured endocardial electrograms.

1. Introduction

In this paper, we compare zero and first order
Tikhonov and Generalized Eigensystem (GES) methods
for estimating the endocardial potentials from potentials
measured on a noncontact probe inserted into one of
the chambers of the heart. There have been numerous
investigations into this type of inverse problem [1, 2, 3,
4, 5] and some new inverse techniques, such as spatial
regularization, have been developed as unique approaches
to solving this type of problem. However, this is the first
attempt to apply the GES method to this problem and
compare the effects of various regularization orders on the
endocardial estimates.

2. Experimental data and model

An Ensite 3000TM noncontact probe (Endocardial
Solutions Inc.) was inserted into the left ventricle of
a patient undergoing endocardial mapping. The Ensite
system measured the location of the probe and the ablation
catheter as the catheter was moved to twenty different
locations in the left ventricle. At each location a sinus
rhythm depolarization was recorded. These asynchronous
recordings were then synchronized in time by aligning body
surface ECG signals. A finite element model of the volume

between the probe surface and the endocardial surface was
generated using the volume model generated by the Ensite
system.

3. Algorithms

Inverse Algorithms. Both Tikhonov regularization
and the Generalized Eigensystem (GES) regularization
methods can be formulated as solutions to the following
minimization problem

min Π = ||p̂− p||2 + λ||Rê||2

ê
(1)

where p is a vector of known (measured) probe surface
potentials, ê and p̂ are estimates of the potentials on the
endocardial surface and probe surface, respectively, R is
the regularization operator, and λ is the regularization
parameter. p̂ and ê are related through the modelling
constraint p̂ = Zê where Z is the transfer matrix. For
zero order regularization, R is an identity matrix, and
endocardial potential estimates with large amplitudes are
penalized. For first order regularization, R is a surface
gradient operator, and endocardial potential estimates with
large spatial slopes are penalized. In general, we attempt
to match the estimated probe surface potentials with
the measured probe surface potentials, while penalizing
endocardial estimates with large magnitudes or slopes. The
regularization parameter λ indicates the relative weight
given to the two terms, and needs to be estimated based
on measurable data.

For Tikhonov regularization, we use the modelling
constraint directly, and have the estimate

ê =
(

Z
T
Z + λRT

R
)

−1

Z
T p (2)

For the Generalized eigensystem methods [6, 7], we
assume

p̂ = ΦPα (3)
ê = ΦEα (4)
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Figure 1. Measured and estimated endocardial potentials at six endocardial sites for zero order Tikhonov regularization
(TIK0), first order Tikhonov regularization (TIK1), and first order GES regularization (GES1). The ordinate is arbitrarily
scaled from -1 to 1, while the abscissa indicates the time in milliseconds. The correlation coefficients between the estimated
and true electrograms are displayed in the legend.
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where ΦP and ΦE are suitably chosen matrices whose
columns contain the expansion vectors, and α is a vector
of expansion coefficients. Note that the expansion vectors
on the endocardium and probe surface are related through
the transfer matrix Z,

ΦP = ZΦE (5)

Minimizing Π leads to the expression for α
(

Φ
T

P
ΦP + λΦT

E
R
T
RΦE

)

α = Φ
T

P
p (6)

Since there were 64 sensors on the endocardial probe, we
limited both methods to 64 modes.

Composite Residual Error and Smoothing Operator.
Originally proposed by Colli-Franzone [8], CRESO
is a commonly used method for determining the
regularization parameter for Tikhonov regularization in
inverse electrocardiography [9, 10]. CRESO finds the value
of λ that maximizes the difference between the derivative of
the smoothing term λ||Rê||2 and the fit to the probe surface
data ||p̂ − p||2. That is, we want to find the smallest value
of λ which maximizes the function

B(λ) = λ||Rê||2 − ||p̂− p||2 (7)

CRESO was used for finding the regularization parameter
for both Tikhonov and GES regularization.

4. Results and discussion

The average correlation coefficients between the estimated
and measured endocardial electrograms were 0.667 and
0.754 for zero order GES and Tikhonov, and 0.871 and
0.849 for first order GES and Tikhonov, respectively.
Figure 1 displays selected estimated and true (measured)
endocardial potentials for zero order Tikhonov (TIK0),
first order Tikhonov (TIK1), and first order GES (GES1)
for six of the twenty measured endocardial sites. The
ordinate is arbitrarily scaled from -1 to 1, while the
abscissa displays the time in milliseconds. The figure also
includes the correlation coefficients between the estimated
and measured endocardial electrograms for each method
analyzed. These results are fairly typical of what we
obtained for the twenty endocardial sites in that some
estimates were very good, but other estimates appeared to
be quite poor.

In this initial study, which included data from only
one patient, the use of higher order regularization
produced a significant increase in the average correlation
coefficient between the estimated and measured endocardial
electrograms for both of the regularization methods
examined.
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