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Abstract

In this communication we present a combination
of two state-of-the-art machine learning methods for
predicting mortality in patients with unstable angina (UA).
Support Vector Machines (SVM) are used as non-linear
discrimination tools. However, before building the models,
selection of the best subset of variables is carried out with
Genetic Algorithms (GA).

The best subset of descriptors selected by the GA
was constituted by five variables from the originally 75
collected. The data was split into a training set (483
patients; 22 cases with UA) and a validation set (243
patients; 12 of cases with UA). The criterion used to select
the best model was based on the sensitivity (SE), specificity
(SP) and negative predictive values (NPV) in the validation
data set. The final SVM model (RBF kernel) yielded good
results (SE = 66.67%, SP = 79.77% in the validation set).
The recognition rate was 79.12% and a high rate of NPV
(97.87%) was obtained. Methods proposed have proven to
be well-suited for this problem, simplifying the solution and
providing excellent discrimination scores.

1. Introduction

Angina is the primary symptom of coronary artery
disease and, in severe cases, of a heart attack. Angina is
usually referred to as stable (predictable) or unstable (less
predictable and a sign of a more serious situation).

The prognosis of patients admitted for acute myocardial
infarction (AMI) and unstable angina (UA) has
progressively improved in the past 30 years. However,
despite advances in the treatment of these diseases, there
is still a high in-hospital mortality. The introduction
into clinical practice of effective treatments, such as
thrombolysis, aspirin,

�
-blockers, and angiotensin-

converting enzyme ACE inhibitors, has changed the
prognosis of diseases. More aggressive interventions, such
as direct percutaneous transluminal coronary angioplasty

(PTCA) might, for selected patients, further decrease
in-hospital mortality. Practitioners have a wide variety of
reperfusion strategies to interrupt the evolving myocardial
event but the efficacy of therapeutic intervention in acute
ischemic cardiopathy is strongly time dependent.

The importance of risk assessment is due to the
variability in mortality risk, and the time dependence of
the efficacy of reperfusion therapy among patients with UA.
In this context, the use of classification methods to predict
prognosis, might, further decrease in-hospital mortality.
To allocate every patient to the most beneficial treatment,
the risk profile of every single patient should be available
immediately when a patient enters the medical care system.
Careful risk assessment for each patient aids clinicians in
assessing prognosis and may therefore be a useful guide in
management thus providing valuable information.

In this communication we present a combination of
two state-of-the-art machine learning methods for detecting
patients with unstable angina. We used Support Vector
Machines (SVM) as non-linear discrimination tools. Before
building the models, selection of the best subset of variables
is carried out with Genetic Algorithms (GA).

The paper is outlined as follows. In Section II, data
collection and the scope of our study are presented. In
Section III methods are detailed. Results in Section IV will
precede some concluding remarks.

2. Data collection and scope

The RESCATE (Recursos Empleados en el Síndrome
Coronario Agudo y Tiempos de Espera) study consisted
of a registry of first AMI and UA patients admitted to
one hospital with, and three others without, coronary
angiography facilities or coronary surgery. Patients were
followed for six months after admission. All four
participant hospitals were teaching institutions.
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2.1. Inclusion criteria

Between May 1992 and June 1994, all primary UA
patients up to the age of 80 years with no history of
myocardial infarction admitted to the four participating
hospitals were included.

The diagnosis of UA was made when a typical chest
pain occurred in any of the following presentations: 1)
progressive angina (i.e. increase in the number of angina
pectoris attacks or progressive decrease in physical exertion
in the last month); 2) angina at rest (i.e. ischemic-type chest
pain at rest of less than 20 min duration); 3) prolonged
angina (i.e. ischemic-type chest pain lasting more than
20 min); and 4) variant angina (i.e. ischemic-type chest
pain at rest with ST-segment elevation). Any one of these
four types was considered to be new-onset angina when it
lasted less than one month. However, new-onset angina
per se was not considered unstable if it did not meet
the criteria for one category of the above classification.
Conversely, ischemic electrocardiographic (ECG) changes
during symptoms at any time of hospitalization, positive
exercise test, significant lesions at coronary angiography or
previous diagnosis of angina also had to be present. The
diagnosis of AMI was ruled out in all patients by serial
enzymatic determinations. Informed consent was obtained
from all patients before their inclusion in the cohort, and
the study was approved by the ethics committee of the four
participating hospitals.

A total of 2661 patients with unstable angina were
consecutively admitted to the participating hospitals. Of
these patients 839 (31.5%) fulfilled the study inclusion
criteria. In addition, only patients containing all
characteristics were included and therefore, the final cohort
was reduced to 726 patients.

2.2. Exclusion criteria

Exclusion criteria included previous AMI, residence
outside of the catchment areas, previous inclusion in
the registry or any of the following conditions: life-
threatening diseases other than the index event, previous
CABG or PTCA, or coronary angiography in the last six
months. Patients enrolled in ongoing clinical trials were not
excluded so as to reproduce more faithfully the real caring
scenarios.

2.3. Primary end points

A composite primary end point included mortality or
readmission within six months after the onset of UA for
any of the following reasons: AMI, UA, congestive heart
failure, sustained ventricular tachycardia or ventricular
fibrillation.

2.4. Study variables

The following variables were prospectively recorded by
a trained medical investigator at each center: demographic
data, history of hypertension, diabetes, chronic obstructive
pulmonary disease, peripheral vascular disease, smoking
status, previous angina, acute pulmonary edema or
cardiogenic shock, ECG changes during admission,
presence of severe arrhythmia1, delay from onset of
symptoms to fist monitoring in an emergency room,
hospital stay, exercise test, coronary angiography, PTCA
and CABG.

3. Methods

Before building a model, the most significant predictors
must be selected; otherwise, insignificant parameters could
become noise and alter its performance, thus producing
an unreasonable outcome. This is especially true when
the number of available input variables is large, and
exhaustive search through all combinations of variables is
computationally infeasible.

3.1. Genetic Algorithms for subset selection

In order to reduce the models’ complexity and to
circumvent the curse of dimensionality we have used
Genetic Algorithms (GA) to evaluate the influence of the
independent variables on the risk of acute UA. Genetic
Algorithms are a class of robust problem solving techniques
based on the principles of genetic variation, and natural
selection [1, 2].

The most general formulation of a GA performs three
steps iteratively: selection, crossover and mutation, which
are extensively discussed in the literature [1]. The final
goal is to maximize a fitness function associated to every
individual or coded input space in form of binary strings.
This procedure provides a method for efficiently explore the
entire solution space.

3.1.1 Solution coding

If we assume that there are � predictor variables ��� ,	�
����������� � and a response variable � that labels the class
belonging of a specific pattern. We can describe a linear
classification model as:� 
������������ ���!�"���#���%$'&(�)�*$'&��+�,�%$'�*$-�/.

(1)

and each possible subset can be described as a binary string
of length � �0�

.1
Severe arrhythmia is defined in this study as the occurrence of at

least one episode of sustained ventricular tachycardia requiring immediate
medical intervention or ventricular fibrillation
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3.1.2 Fitness function

Before attempting any GA procedure we must select
a fitness function in order to evaluate the solution in
each iteration. The individual with higher fitness function
has a higher probability of being selected to propagate
a new generation. In this paper we have used several
information criteria as fitness functions: the Mallow’s2+3

criterion, the classical Akaike’s Information Criteria
(AIC) and the Maximum Description Length (MDL)
criteria. We have transformed these the-smaller-the-better
performance statistic measurements into fitness functions to
be maximized by previously rescaling them. This approach
is based on the work [3].

3.2. Support Vector Machines

Support Vector Machines (SVM) have been recently
proposed as a method for pattern classification and non-
linear regression [4]. Their appeal lies in its strong
connection to the underlying statistical learning theory
where an SVM is an approximate implementation of the
method of structural risk minimization, which seeks to
minimize an upper bound of the generalization error rather
than minimizing the training error. This approach results in
better generalization than conventional techniques.

Given a labeled training data set 46587:9<;'7>= , ?"?�? , 4@5�A 9B;CAD= ,
where 5�EGFIH+J and ;�EGFLKNMPOC9RQSONT , and a non-linear
mapping, U 4<V = , usually to a higher dimensional space,H+JXWRY6Z [QR\]H_^ ( `baGc ), the SVM method solves:dfe�ghji kmlni o p Oqsr>tur>v M 2,w Eyx E�z (2)

subject to the following constraints:;CE<4 Uj{ 465(E|= t MG}>=�~�O�Q x E ���%��OC9"?�?�?�9<� (3)x E+~y� ���%��OC9"?�?�?�9<� (4)

where t and } define a linear regressor in the feature space,
non-linear in the input space unless U 4@58�6= = 5(� . In addition,x E and

2
are, respectively, a positive slack variable and

the penalization applied to errors. The parameter
2

can
be regarded as a regularization parameter which affects the
generalization capabilities of the classifier and is selected
by the user. A larger

2
corresponds to assigning a higher

penalty to the training errors.
A SVM is trained to construct a hyperplane US{ 4@5(En= t M}��L� for which the margin of separation is maximized.

Using the method of Lagrange multipliers, this hyperplane
can be represented as:w E!� E�;CE U 4@5(En=_V U 4@5�=s��� (5)

where the auxiliary variables � E are Lagrange multipliers.
Its solution reduces to:
Maximize:� J�� w E0� E Q Oq w E i � � E � � ;�E@; � U 4@5(En=_V U 465 � = (6)

subject to the constraints:w E!� E ; E ���D9��f� � E � 2 9 (7)

Using the Karush-Kuhn-Tucker Theorem [5], the
solution is a linear combination of training examples which
lie closest to the decision boundary (the corresponding
multipliers are non-zero). Only these examples, called
support vectors, affect the construction of hyperplane.

The mapping � must guaranty that patterns, non-linearly
transformed to a high–dimensional space, are linearly
separable. This formulation allows that all the � mappings
used in the SVM occur in the form of an inner product.
Accordingly, the solution is to replace all occurrences of an
inner product resulting from two mappings with the kernel
function � defined as: �(465_EB9<5 � =f� U 465(E|=�V U 4@5 � = . Then,
without considering the mapping � explicitly, a non-linear
SVM can be constructed by selecting the proper kernel.

4. Results

4.1. Model development

Non-linear classifiers are obtained by taking the dot
product in kernel-generated spaces. Some common kernels
are the following:� Linear: � ( 5�E , 5 � ) = 5(E(V�5 �� Polynomial: � ( 5 E , 5 � ) = 4@ 5 E V"5 � M0O�=BJ� Radial Basis Functions (RBF): � ( 5�E , 5 � ) = ��� Y�� l Z �:�m[@�)���:�
Note that one or more free parameters must be previously
settled in the non-linear kernels (polynomial degree c ,
width � ) together with the trade-off parameter

2
, usually

known as the penalization factor. We selected the
best subset of free parameters using the four-fold cross-
validation method in the training data set. Individual
penalization parameter for every training sample was
strictly necessary since the distribution of classes is highly
unbalanced (4.45% of cases with UA).

All models were developed in MATLAB   environment
(Mathworks, Inc). Since computational burden was very
high, m-files were translated to MEX-files and programs
were run in fast workstations2.¡

A huge number of trainings were performed in Dual K7-2.3GHz
platforms, 1.5GBytes RAM.
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4.2. Feature selection

Before building the models, selection of the best
subset of variables was carried out with two approaches.
Firstly, we selected relevant variables through conventional
feature selection techniques (principal component analysis,
correlation function, statistical descriptors and entropy
measures). The best subset was reduced to 14 variables
from the originally 75 collected. However, we continued
inspecting smaller subsets with the GA approach (Fig.
1). Despite the optimal subset is formed with only
two variables (relatives with schemic cardiopathy and
previous diagnosis of angina), there are no significant
differences between the solution of five factors (relatives
with schemic cardiopathy, previous diagnosis of angina,
hipercholesterolemia, habitual smoker and gender), which
has revealed more robust in the validation set.
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Figure 1. Evolution of Mallow’s ¢�£ for different optimal
subsets of variables.

4.3. Risk stratification

Once the variables were selected, data was split into a
training set (483; 22 cases with UA) and a validation set
(243 patients; 12 of cases with UA). Selection of the model
was subjected to the following two restrictions:

1. The negative predictive value (NPV%) must be higher
than 97.5% since we must reduce as much as possible the
rate of false predictions on the true positives.
2. After condition one is ensured, we must increase as
much as possible the success rate (SR%). However, in
order to obtain well-balanced models, we used the sum of
sensitivity (SE) and specificity (SP) factors to select the best
model.

The final SVM model (RBF kernel) yielded good results
(SE = 66.67%, SP = 79.77% in the validation set) although
regularization was a hard problem to solve. The recognition
rate was 79.12% and a high rate of negative predictive
values (NPV = 97.87%) was obtained.

Table 1. Results in the validation set of SVMs with
different reproducing kernels in Hilbert space.

Score RBF Polynomial Linear
kernel kernel kernel¢�¤!¥§¦©¨ , ªX¤0«§¦ ¬ ¢¤�® , ¯P¤° ¢±¤±²#°

SR 79.12% 77.55% 75.49%
SE 66.67% 66.66% 65.34%
SP 79.97% 77.56% 74.33%
NPV 97.87% 97.87% 97.87%

5. Conclusions

We have presented a combined strategy of evolutionary
algorithms and state-of-the-art machine learning methods
that allow for reliable prediction of angina. We can
conclude that Support Vector Machines are inexpensive,
quick and precise tools for assessment of risk for 6-month
mortality. The use of GA has reported knowledge gain
about the problem.
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