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Abstract 
A new algorithm is proposed for the online Fourier 

analysis of unevenly sampled data. The method is based 
on the theoretical evaluation of the Fourier Transform of 
a function linearly interpolating the data, and does not 
require actual interpolation and re-sampling. The method 
is particularly suitable for the running evaluation of 
power spectra. In fact, when a new sample is available, 
the spectrum can be updated simply by performing 
calculations on the last sample, without the need to 
calculate the Fourier Transform again over the whole 
data record. Applications with simulated and real data 
show the capability of the algorithm to efficiently 
estimate the Fourier transform of unevenly sampled 
cardiovascular data, beat after beat.  

 
 

1. Introduction 
 Beat-by-beat time series of heart-rate or systolic and 
diastolic blood pressure data are made of unevenly 
sampled elements. In fact, these parameters can be 
estimated at a sampling frequency that corresponds to the  
instantaneous heart rate, which fluctuates over time. 
Since traditional spectral estimators are based on the 
Fourier Transform of the data, they need the input series 
to be evenly sampled to avoid distortions in the spectra. 
For this reason, the beat-to-beat series are interpolated 
and resampled evenly at a sampling frequency higher 
than the mean heart rate. Then, a batch of data is analysed 
by means of an FFT algorithm. These procedures are not 
particularly efficient when real time spectral analysis are 
needed. Here we propose a computationally efficient 
algorithm for the on-line Fourier analysis of beat-by-beat 
data. The method is based on the evaluation of the 
analytic expression of the Fourier Transform of the 
interpolated time-series, and does not require actual 
interpolation and resampling.   
 The method is applied on simulated and real heart-rate 
data to show its capability to analyse unevenly sampled 
series, and the feasibility of running spectral analysis of 
cardiovascular data beat after beat. 

2. The algorithm 

2.1. Fourier transform of linearly 
interpolated time series  

 
Let's consider a series of N unequally spaced events: 

X(tn), n=1,…N. This series could be a beat-by-beat 
sequence of RR interval, or a series of blood pressure 
values. Let's call x(t) the continuous function of time t 
derived from X(tn) by linear interpolation of the data. 

 
Figure 1. From top to bottom: X(tn), the original unevenly 
sampled series; x(t) obtained by linearly interpolating 
X(tn); decomposition of x(t) in triangular functions Tn(t). 
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As shown in fig.1, x(t) can be seen as the superposition 
of triangular functions Tn(t). Each function Tn(t) can be 
further decomposed into the sum of two rectangular 
triangles: Tn(t)= Tn

Left(t)+ Tn+1
Right(t) (see fig.2) with: 

( )






=

≤≤
−
−== −

−

−

elsewhere                                0

 when   )( 1
1

1
nn

nn

n
nLeft

n

ttt
tt
tt

tX
tT

( )






=

≤≤
−
−== +

+

+

+

elsewhere                                0

 when   )( 1
1

1

1
nn

nn

n
nRight

n

ttt
tt
tt

tX
tT  

 
Figure 2. Decomposition of Tn(t) in two rectangular 
triangles, Tn

Left(t) and Tn+1
Right(t). The first is defined by 

the (n-1)th and nth samples; the second by the nth and 
(n+1)th samples . 

 
Thus, we can formulate x(t) as: 
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Thanks to the linearity of the Fourier transformation, 
the Fourier Transform of x(t), F(ω), is the sum of the 
Fourier Transforms of all the triangular functions. In 
particular, calling Fn

L(ω) and Fn
R(ω) the Fourier 

Transforms of Tn
Left(t) and Tn

Right(t), we have: 
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where ω=2πf is the angular frequency. Thus, if we know 
the analytic expressions of Fn

L(ω) and Fn
R(ω), we can 

easily evaluate F(ω) analytically. The analytic 
expressions of Fn

L(ω) and Fn
R(ω) are derived in the 

appendix and are: 
for ω = 0 
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while for ω ≠ 0 they are: 
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where [ ]  )( b
auf  means f(b)-f(a). A software 

implementation of eq.(1) can be found in [1]. 
 
2.2. The running spectrum 

 
Once F(ω) is calculated from a block of N data, when 

a new sample X(tN+1) is obtained, it is not necessary to 
calculate F(ω) again from the whole dataset of N+1 data. 
In fact, F(ω) can be simply updated by adding two new 
terms: 

F(ω) = F(ω)+FN+1
L(ω)+FN+1

R(ω) 
 
Moreover, if we want a running evaluation of F(ω) 

over a window of length N samples, we should also 
subtract the terms corresponding to the sample at time tn-N 

 
F(ω)=F(ω)+Fn+1

L(ω)+Fn+1
R(ω)-Fn-N

L(ω)-Fn-N
R(ω) 

(eq.2) 
In this way we can get a time-varying evaluation of the 

Fourier Transform, F(t,ω),  over a window spanning from 
t1 to tN and centred at time t=(t1+tN)/2. 

The power spectrum, PSD(ω), evaluated over N 
samples {X(tn)} n=1,…N is derived from the Fourier 
Transform F(ω) as [2]: 

PSD(ω)=2|F(ω)|2/ (tN-t1) (eq.3) 
 
3. Applications on simulated and real 
data 
 
3.1. Power spectrum of an unevenly 
sampled sinusoid 
 

To verify how the algorithm can correctly estimate the 
power spectrum of unevenly sampled signals, we 
generated a 0.1-Hz sinusoid for 100 s. The sinusoid was 
sampled every 500 ms during the first 50 s, and every 100 
ms during the period from 50 s to 100 s (see fig.3).  

 
Figure 3. Simulated unevenly sampled signal. A 0.1-Hz 
sinusoid is sampled with sampling period equal to 500 ms 
during the first 50 s, and equal to 100 ms during the last 
50 s. 
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The algorithm was then directly applied on the 
unequally spaced samples. The power spectrum is shown 
in fig. 4. The shape is very close to the theoretical 
spectrum of a 0.1-Hz sinusoid of 100-s duration,  
indicating that the spectral estimates are not appreciably 
distorted even in presence of very large changes of the 
sampling frequency. 

 
Figure 4. Power spectrum of the unevenly sampled 
sinusoid of fig.3 
 
3.2.  Comparison with standard FFT 
methods 
 

To compare this method with standard FFT-based 
algorithms, we considered a series of RR-intervals 
derived in a resting subject for 10 minutes (fig.5). 

  

 
 
Figure 5. Tachogram from a healthy subject at rest. 
 

  The power spectrum was calculated first by directly 
applying the proposed method on the original time-series 
according to eq.1 and eq.3. Then, the RR-interval was 
linearly interpolated and sampled evenly every 100 ms, 
and a FFT spectrum was calculated from the whole 
resampled series. The two power spectra are shown in 
fig.6. It is apparent the similarity of the two spectra. This 
indicates that the proposed method provides spectral 
estimates similar to those obtainable by using the 
traditional FFT methods based on the preliminary data 
interpolation and resampling. 

 
Figure 6. Power spectra for the tachogram of fig.5 
obtained (left) by a FFT-based method after data 
interpolation and resampling, and (right) directly from the 
data by the proposed algorithm. 
 
3.3.  HRV monitoring during parachuting 
 
As an example of running spectral analysis, the method 
was applied for monitoring the LF/HF powers ratio beat-
by-beat in a parachutist during a jump. The recording of 
the RR interval started immediately before take-off and 
ended just after landing. Significant events were marked 
during the recording. A running spectrum was obtained 
by applying the algorithm on a running window of 
N=120 heart beats. The power spectrum was evaluated 
only at the LF and HF frequency bands, i.e., from 0.05 to 
0.15 Hz and from 0.15 to 0.5 Hz respectively, as 
recommended by international guidelines [3].  

 
Figure 7. Upper panel: LF/HF powers ratio calculated 
beat-by-beat by the proposed algorithm in a parachutist 
from take-off to landing. Lower panel: the corresponding 
tachogram. 
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  LF/HF was computed for each heart beat, by upgrading 
the Fourier Transform as in eq. (2). Results (fig.7) show 
clear changes in heart rate, the mean heart period falling 
from about 700 ms at the beginning of the recording to 
values lower than 400 ms after the parachute opening. 
Also the profile of the LF/HF powers shows changes 
associated with specific events, which are likely to be 
coupled to sympathetic activations. Two of these changes 
(stand-by and parachute opening) are follwed by a 
consistent and prolonged rise in heart rate. 
 

4. Conclusions 
The proposed method allows the spectral analysis of 

unevenly sampled series without requiring interpolation 
and resampling. Tests on simulated and real data showed 
that the algorithm provides spectral estimates similar to 
those obtainable by the more complex traditional 
procedures but at a fraction of the computational burden. 
These properties make the proposed procedure a valuable 
tool for an efficient spectral analysis of HRV signals.  

 
5. Appendix: derivation of Fn

L(ωω) and 
Fn

R(ωω) 
 
The Fourier Transform of a signal f(t) is defined as: 
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Calling ∆n=(tn-tn-1) and an=X(tn) for notational simplicity, 
we can write: 
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while for ω ≠ 0  
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with u=-iωt, and remembering that 

Ceueduue uuu +−=∫  and that 

 Cedue uu +=∫  (see ref.[4]) we get 
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Similarly: 
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