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Abstract

Only few studies on heart rate variability (HRV) in
athletes have been performed so far. Moreover most of
the data were obtained from time or frequency analysis.
The aim of the present work was to use methods of non-
linear dynamics to study heart rate variability in a young
population consisting of athletes and a sedentary group,
used as controls.
ECG episodes lasting 10 min were recorded digitally in
supine position in a group of 34 young subjects.  Spectral
analysis was performed with Fast Fourier transform
(FFT). Following non-linear methods were computed:
fractal dimension),1/f slope, approximate entropy (ApEn)
and Lyapunov exponent.

Major difference between controls and aerobic
athletes was in resting heart rate. ApEn correlated well
with power spectral density. Aerobic athletes showed a
difference with controls in ApEn and Lyapunov exponent.

   Results indicate a possible relation of non-linear
indices and autonomic regulation of cardiovascular
function.

1. Introduction
Heart rate variability (HRV) has become a universal

tool to study the neural control of the heart i.e. the
delicate interaction between sympathetic and vagal
influences on heart rate [1] in health and disease. A
variety of linear, non-linear, periodical and non-
periodical oscillation patterns are present in heart rate
fluctuations [2].

HRV can be quantified by the simple calculation of the
mean and standard deviation of RR-intervals in the time
domain. Furthermore, in the frequency domain, spectral
analysis of HRV reveals two distinct frequency regions in
the modulation of heart rate in humans. A high frequency
region (0.16-0.4 Hz) which is a marker of vagal
modulation, and a low frequency region (0.04-0.15 Hz),
which reflects predominantly sympathetic tone [3] and
baroreflex activity [4]. Both time domain and frequency
domain methods are based on the assumption that HRV
signals are linear [5], and thus these methods cannot fully
quantify the dynamical structure of the signal. To assess

the non-linear properties, several methods have been
proposed in the past: fractal dimension [6], Lyapunov
exponents [7], correlation dimension [8, 9], 1/f slope
[10], approximate entropy [11] and detrended fluctuation
analysis [12]. All these methods quantify some non-linear
characteristic of HRV. The non-linear methods represent
potentially promising tools for heart rate variability
assessment, especially in combination with the well
known time and frequency domain methods.

The aim of this work was to study heart rate variability
(HRV) in a young population with the above mentioned
methods and compare nonlinear indices with spectral
analysis and to compare indices in differently athletic
trained groups.

2. Methods
2.1. Study population

Thirty four young subjects (all male, 18-34 years of
age) were included in this study. All subjects were
physically healthy with no history of cardiac disease. The
population consisted of 4 groups: 10 endurance trained
athletes (aerobic, all mid-distance runners), 7 static
trained athletes (anaerobic, high jumpers and javelin
throwers), 7 rugby players (mixed type of training) and
10 subjects with a sedentary life style (controls). The
athletes were of national competition level and trained
between 6 and 9 hours a week. They had been involved in
physical exercise since 4-5 years. All groups were age
matched and there were no significant differences in
physiological baseline characteristics between the four
groups.

All subjects gave informed consent to the protocol,
approved by the local ethical committee.

2.2. Data acquisition
Short-term ECG signals of the subjects were recorded

during 10 minutes consecutively in supine position.
Analogue ECG signals were digitised with a Dataq A/D
converter (Dataq DI 220PGH, 8 channels, 12 bit
precision, maximal 82.9 kHz sampling rate over all
channels, DATAQ Instruments Inc., Akron, OH, USA) at
a rate of 1000 Hz, providing a time resolution of 1 msec
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Figure 1. Tachogram obtained from an aerobic
athlete.

to allow accurate RR peak detection. Real time digital
signal acquisition was performed by a PC (DELL, PII
233 MHz) equipped with Windaq Recording Software
(DATAQ Instruments Inc., Akron, OH, USA). Peak
detection was performed using a self-developed
LabVIEW program [13]  (Laboratory Virtual Instrument
Engineering Workbench version 5.0, National
Instruments, Austin, TX, USA). Adequacy of peak
detection was controlled by the operator before further
processing of the tachogram time series

2.3. Data analysis
Measurements of HRV in both time and frequency

domains were calculated following international
standards. In the time domain, measurements included
mean NN and SDNN, rMSSD and pNN50 [2]. The power
spectral density of HRV was derived from the tachogram
after resampling at 2 Hz (in order to obtain equidistant
points) and FFT computed after Hanning windowing over
256 points (128 s). All software has been developed in
house [14] and thoroughly validated. Total power (TP),
low frequency (LF, 0.04-0.15 Hz) and high frequency
(HF, 0.15-0.4 Hz) spectral power density were computed,
as well as LF/HF.

2.4. Non-linear dynamics methods
The following non-linear methods were computed:

fractal dimension, 1/f slope, ApEn, and Lyapunov
exponent.

Non-linear (deterministic) chaos refers to a
constrained kind of randomness, which may be associated
with fractal geometry. A fractal has as an essential
characteristic that its details at a certain scale are similar
(though not necessarily identical) to those of the structure
seen at larger or smaller scales.

Entropy refers to system randomness, regularity and
predictability and allows systems to be classified by rate
of information loss or generation.

The trajectories of a chaotic signal in phase space
follow typical patterns. Closely spaced trajectories
converge and diverge exponentially relative to each other.
Lyapunov exponents measure the average rate of
convergence/divergence of these neighboring trajectories.
A positive Lyapunov exponent can be considered as a

definition of chaos provided the system is known to be
deterministic.

Details on computation of all non-linear parameters
were described previously [15, 16].

3. Results

      A typical tachogram obtained after peak detection on
a 10 min ECG recording from an aerobic trained athlete
is shown in figure 1. Aerobic trained athletes showed a
lower resting heart rate (also visible on figure 1)
compared to controls; 50±4.6 vs 73±14 beats/min.
Systolic blood pressure was higher in anaerobic vs
controls (147±4.1 vs 134±16 mmHg).

Non-linear behaviour of the tachogram data sets can
be shown by creating a surrogate data set. This artificial
data set has exactly the same linear properties has the
original (statistical characteristics (mean) and power
spectral density), but has no further determinism built in.
The surrogate data set is obtained  as follows: compute
FFT of the original, multiply phase by random phases,
uniformly distributed in [0, 2ð], then compute the inverse
FFT [9, 17].

 

Figure 2. Phase portrait of the data shown in Fig. 1,
with an embedded time delay of 0.5 s

 If the measured data are properly described by a linear
process, then no significant differences from the artificial
ones should be found. The original and artificial time
series are compared by plotting each value against the
value a certain time delay (Ät) earlier. The optimal value
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for Ät is obtained from the maximum of the
autocorrelation function.

Figure 3 Phase portrait of an artificial data set consisting
of the random numbers with the same linear properties as
data in figure 2.

The resulting two phase portraits look qualitatively
different. There is a (ellipsoidal) structure present in the
original data (Fig. 2), which is not reproduced by the
artificial series (Fig.3), showing non-linearity in the
system.

Analysis of the frequency domain variables (Table 1),
revealed that aerobic trained athletes had significantly
more total power and LF and a tendency to higher HF.

Table 1. HRV parameters in the frequency domain.

Ln(TP)
(ms 2)

Ln(LF)
(ms 2)

Ln(HF)
(ms 2)

LF/HF

Control 7.9±0.8 6.88±0.6 6.18±1.01 2.4±1.5
Aerobic 8.76±0.36* 7.73±0.49* 7.08±0.68 2.15±1.7
Anaerobic 7.82±0.56 6.85±0.51 6.07±0.73 2.34±1.0
Rugby 7.51±1.11 6.80±1.10 5.38±1.63 5.0±3.2*

Values are mean±SD, TP, LF and HF are ln
transformed to normalize distribution.

Rugby players had a shifted sympatho-vagal balance
towards larger LF power. Anaerobic athletes were not
diversified from controls.

Non-linear analysis parameters are listed in Table 2.
No significant differences could be shown between the
different groups for any of the parameters. There is an
overall tendency for parameters from the aerobic athletes
group, to be somewhat smaller. Correlations between all
parameters (frequency domain and non-linear) only
showed a significant relationship between total power

and ApEn and LF and ApEn. Among the different non-

Table 2 Parameters obtained from non-linear methods.
The column of 1/f shows the exponent of the numerator.

FD 1/f ApEn Lyapunov
Control 1.27±0.08 0.8±0.26 1.09±0.19 0.78±0.18

Aerobic 1.24±0.26 0.72±0.33 0.93±0.33 0.65±0.21
Anaerobic 1.28±0.28 0.93±0.42 1.17±0.36 0.87±0.23
Rugby 1.24±0.29 0.89±0.44 0.98±0.31 0.80±0.22

linear parameters, only FD and ApEn were correlated.
Values of the reconstruction delay in the computation of
the Lyapunov exponent varied from 3 through 11 and
were calculated separately for each time series. The
embedding dimension was equal to 2. Values from the
anaerobic group showed a tendency towards higher
values compared to the control group.

4. Discussion
Linear methods interpret all regular structure in a data

set as linear correlations, meaning that the intrinsic
dynamics of the system are governed by the linear
paradigm that small causes lead to small effects. All
irregular behaviour has to be attributed to some random
external input to the system. On the other hand, non-
linear, chaotic systems can produce very irregular data
with purely deterministic equations of motion.

In order to show that the tachogram time series (Fig. 1)
has a non-linear behaviour, we compared the original
with an artificial data set. The resulting phase portraits
(Fig. 2 and 3) look qualitatively different. Since both
series have the same linear properties, the difference is
most likely due to non-linearity in the system.

4.1. Fractal dimension and 1/f
    The details of a fractal at a certain scale are similar  to
those of the structure seen at larger or smaller scales i.e.
when the heart rate of a healthy subject is recorded for 5,
50 and 500 min, the fast erratic fluctuations in the
tachogram seem to vary in a similar manner to the slower
fluctuations (self similarity at different time scales).
   The scaling property is related to the 1/f behaviour. The
different groups were not differentiated for this parameter
and the exponent was close to one (Table 2).
    The familiar concept of dimensions in daily life
(Euclidean space) is clear: a point has the dimension 0, a
line or curve has dimension 1, a surface 2 and a volume
3. A fractal line however (tachogram) spills over into
two-dimensional space and therefore has a non-integer
dimension between 1 and 2. Values found between
different groups are all within the same range, indicating
a non-discriminatory property of this parameter.
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4.2. Entropy
The classification of dynamical systems via entropy

stems from theoretical work of Kolmogorov in the 50’s.
Another mathematical approach called ‘approximate
entropy’ (ApEn) has been introduced as quantification of
regularity in data [18]. ApEn measures the likelihood that
runs of patterns that are closely similar will remain close
for the subsequent incremental comparison. The
probabilistic nature of this parameter implies that it will
be most useful to uncover subtle abnormalities or
alterations in long-term data that are not otherwise
apparent. Values in athletes (Table 2) are comparable to
previous published work [19].

4.3. Lyapunov exponents
The Lyapunov exponent is a quantitative measure of

separation of trajectories in phase space that diverge from
their initial close positions. The magnitude of the
exponent is also related to how chaotic a system is. The
larger the exponent, the more chaotic the system. A
periodic signal for example will have exponent zero. A
positive Lyapunov exponent indicates sensitive
dependenence on the initial conditions and is a diagnostic
of chaos, provided the system is known to be
deterministic. Results indicate the aerobic athletes to be
the least chaotic.

It is important for the computation of the Lyapunov
exponent to determine the optimal time delay. Some
authors use a fixed value, while others prefer to calculate
a time lag for each subject, which we also preferred.
Values deviating too much from the optimal lag will lead
to erroneous values of the Lyapunov exponents.
We conclude that: 1. Non-linear dynamics methods are
more complex from the structural point of view as well as
from computational; 2. Some of the non-linear methods
(Lyapunov especially) may require longer data
recordings, 3. Approximate entropy, based on the
detection of similarity patterns in a time series, seems the
most powerful of the non-linear methods used. Non-
linear methods are also graphically less appealing. Finally
non-linear time series analysis is much less understood
(for basic physiologic understanding) than classical
methods for linear processes.
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