
Analysis of the Maximum A Posteriori Approach to the Inverse Problem of
Electrocardiography for Different Depolarization Sequences

G Bu1, RD Throne2, LG Olson3, JR Windle4

1Electrical Engineering, University of Nebraska, USA
2Electrical Engineering, Rose-Hulman Institute of Technology, USA

3Mechanical Engineering, Rose-Hulman Institute of Technology, USA
4Internal Medicine, University of Nebraska, USA

Abstract

In this paper we investigate the previously proposed
maximum a posteriori (MAP) approach to the problem
of determining epicardial potentials from measured body
surface potentials, a form of the inverse problem of
electrocardiography. The MAP inverse approach uses a
priori knowledge of the covariances between epicardial
electrograms in its estimate of epicardial potentials.
However, in practice, this information is not generally
available. In this paper we examined the effectiveness of
this method when the covariances are estimated using one
depolarization sequence and the MAP method is used with
these covariances to estimate the epicardial potentials for a
different depolarization sequence.

1. Introduction

There have been many different approaches to the
problem of estimating epicardial potentials from measured
body surface potentials, a form of the inverse problem of
electrocardiography. The most widely used methods are
generally some form of Tikhonov regularization where the
measured body surface potentials are matched to a model
with an additional imposed penalty on either the magnitude
or slope of the estimated potentials [1, 2, 3, 4, 3, 5, 6, 7, 8].

In this study we examined the maximum a posteriori
(MAP) method of estimating epicardial potentials from
measured body surface potentials which was proposed by
van Oosterom [9]. This method assumes the covariances
between epicardial electrograms are known in its estimate
of epicardial potentials. However, in practice, this
information is not generally known. In this paper
we examined the effectiveness of this method when
the covariances are estimated from one depolarization
sequence and the MAP method is used with these
covariances to estimate the epicardial potentials for a
different depolarization sequence. The results for the MAP

method are compared with those of standard zero order
Tikhonov regularization.

2. Experimental data and model

For this paper, data was collected during an in-vivo
experiment on swine. The swine model was used because
of its similarity to humans in the anatomical arrangement
of heart, lungs, bone, muscle, etc. For this experiment,
bipolar pacing electrodes were sewn to the heart surface
(the epicardium) in six different locations, and an epicardial
sock was placed over the heart surface and over the
pacing electrodes. The epicardial sock had effectively
nine columns of six electrodes arranged about the heart.
The chest was then sewn shut and unipolar recordings of
epicardial potentials were made from the epicardial sock
electrodes while the heart was paced from the six sites
(Prucka Engineering, Houston, Texas).

A finite element model of the region from the epicardium
to the torso was constructed using the I-DEAS finite
element package (SDRC, Ohio) from CT scans made of
the swine. For this study we assumed a homogeneous
model with 41,430 nodes and 212,366 linear tetrahedral
elements. The finite element model had 1748 nodes on
the epicardium. In order to project the measured epicardial
potentials at the 54 electrodes to the torso, we performed
Laplacian interpolation from the measured electrodes to
estimate the potentials at the remaining finite element nodes
on the heart surface [10]. Using standard finite element
techniques [3] a transfer matrix relating the (measured and
estimated) epicardial potentials at all nodes on the heart
surface to finite element nodes on the body surface was
constructed. Specifically, our transfer matrix related the
potentials at all 1748 epicardial nodes to 96 finite element
nodes on the torso (body) surface which we assumed to
be the measurement locations. These 96 torso surface
locations were fairly evenly spaced near the heart on the
pig torso.

The time segments analyzed consisted of the QRS
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portion of the cardiac cycle beginning just after the pacing
spike. The RMS values of the measured epicardial
potentials as a function of time for the portion of the QRS
analyzed in this paper are displayed in Figure 1 for the six
pacing sites. As the figure illustrates, the duration of the
QRS varies as the source of the ventricular depolarization
is varied, from a minimum of 75 milliseconds to 120
milliseconds.

In order to simulate modelling and measurement errors,
white Gaussian noise was added to the computed body
surface potentials. Once the body surface potentials were
computed, the segments of time to be analyzed were
determined and the corresponding body surface potentials
were determined. The RMS value of the body surface
potentials over the entire time period to be analyzed was
determined as
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where N is the number of sample points in the QRS to be
analyzed, bk

i
is the ith sample point in the QRS at the kth

location. Once the RMS value was determined, zero mean
white Gaussian noise with standard deviations of

σ = RMS ∗ f (2)

was added to the body surface potentials, where f was
varied. Specifically, f was 0.05 for the 5% noise level used
throughout this paper, although other levels of noise were
also examined.

3. Inverse algorithms

In this section we introduce the two inverse algorithms
we examined. Commonly used zero order Tikhonov
regularization was used as a baseline and is introduced first,
followed by the MAP method.

Zero Order Tikhonov Regularization. Zero order Tikhonov
regularization can be formulated as the solution to the
following minimization problem

min Π = ||Zĥ
i
− b

i
||2 + λi||ĥi||

2

ĥ
i

(3)

where b
i

is a vector of known (measured) body surface
potentials (at time i), Z is the transfer matrix, ĥ

i
is

the estimate of the potentials on the heart surface (the
epicardium) surface (at time i) and λi is the regularization
parameter (at time i). In general, we attempt to match the
estimated body surface potentials (Zĥ

i
) to the measured

body surface potentials, while penalizing epicardial
estimates with large magnitude. The regularization

parameter λ indicates the relative weight given to the two
terms, and needs to be estimated based on measurable data.
In this paper we estimated the regularization parameter
using the Composite Residual Error and Smoothing
Operator (CRESO) originally proposed by Colli-Franzone
[5]. The estimated epicardial potentials at each time instant
are then given as

ĥ
i

= (ZTZ + λiI)
−1

Z
T b

i
(4)

There is generally a different regularization parameter λi at
each time instant.

Maximum A Posteriori Method. The epicardial potentials
are estimated from the maximum a posteriori method
(MAP) used in this paper as

ĥ
i

= ΓΨZ
T (ZΓΨZ

T + Γσ)
−1b

i
(5)

where ΓΨ is the estimated spatial covariance matrix of the
epicardial potentials and Γσ is an estimate of the covariance
matrix of the noise. For our simulations, we assumed
we knew Γσ = σ2

I. The spatial covariance matrix was
estimated as

ΓΨ =
1
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where
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1

N
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h
i

(7)

is the estimated mean andN is the number of sample points
in the depolarization sequence.

4. Results and discussion

Table 1 shows the average relative errors for each
of the six depolarization sequences when standard zero
order Tikhonov regularization is used to compute the
epicardial estimate. This was considered the baseline
result. Table 2 presents the average relative errors between
the estimated and measured epicardial potentials when
the correct covariances between epicardial potentials are
known. Comparing these results to those presented in
Table 1, it appears that the MAP method produces superior
estimates to those produced by zero order Tikhonov
regularization. However, in order to obtain these good
results we need to know the correct covariances between
the epicardial potentials. In essence, we need to know the
answer before we start. Table 3 presents the average relative
errors between the estimated and measured epicardial
potentials when the wrong covariances are used with the
MAP method for all of the protocols. Specifically, the first
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Figure 1. RMS values of measured epicardial potentials as a function of time for the six pacing sites. Each pacing site
corresponded to a different depolarization sequence. The QRS duration ranged from 75 milliseconds to 120 milliseconds.
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row shows the results when the covariances estimated from
protocol zero are used with MAP to estimate the epicardial
potentials for the other protocols. The second row shows
the results when the covariances estimated from protocol
one are used with MAP to estimate the epicardial potentials
for the other protocols, and so on. As this table shows, for
nearly all of the depolarization sequences, if the incorrect
covariances are used, the epicardial estimates are worse
than with standard zero order Tikhonov regularization.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
ave. RE 0.73 0.77 0.73 0.75 0.72 0.79

Table 1. Average relative errors between estimated and
measured epicardial potentials using standard zero order
Tikhonov regularization. There were six different pacing
sites, one for each depolarization sequence.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
ave. RE 0.18 0.23 0.23 0.14 0.02 0.26

Table 2. Average relative errors between estimated and
measured epicardial potentials when the correct covariances
between epicardial potentials are known. There were six
pacing sites, one for each depolarization sequence.

ΓΨ from Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
Site 1 – 1.83 1.55 1.40 1.10 1.85
Site 2 0.72 – 0.86 1.11 0.97 1.03
Site 3 0.78 0.84 – 0.90 0.92 0.83
Site 4 1.60 1.71 1.51 – 1.44 1.97
Site 5 1.74 1.69 1.53 1.46 – 1.49
Site 6 1.41 1.82 1.38 1.23 1.14 –

Table 3. Average relative errors between estimated and
measured epicardial potentials when the covariances
between epicardial potentials for the different
depolarization sequence are used for other protocols.
There were six pacing sites, one for each depolarization
sequence.
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