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Abstract

Arterial windkessel mechanisms and arterial pressure

(AP) low frequency (LF) waves were investigated by

means of simple lumped models of a compliant

resistant/arterial tree and of flow regulation in

peripheral vascular districts (PVDs) with three types of

feedback: 1) delay, 2) Van der Pol oscillator, 3) relay; all

were able to actively compensate flow changes and to

simulate peripheral LF vasomotion. Each PVD connected

to a windkessel compartment displayed a reduction and a

disappearance of oscillations with low compliance, when

the windkessel equivalent time constant Teq fall below 2s.

Two PVDs connected to the same windkessel tended to

phase opposition with a negative interference canceling

their LF oscillations from AP. With a modest neural

drive, cancellation was imperfect and AP waves

appeared. Vasomotion, arterial compliances and neural

triggers are all essential in forming LF AP variability

1. Introduction

Cardiovascular variability is the result of complex

interactions between central circuits, pressure regulation

mechanisms and vascular activity controlling peripheral

flow [1, 2]. However, the role played by basic features of

the arterial tree distribution system in enhancing or

damping the effects of vasomotion on systemic arterial

pressure (AP) and in promoting either positive or

negative interferences has not been investigated yet.

The present work addresses the coupling of arterial

compliances and windkessel mechanisms with low

frequency (LF, 0.1 Hz) vasomotion by means of simple

models of peripheral blood flow control in peripheral

districts connected to a resistant/compliant arterial tree,

which is sketched in Fig.1a.

The windkessel effect [3] is a core concept in studying

arterial circulation as it explains the buffering action of

arterial compliances, which transform the pulsatile aortic

flow into a smooth peripheral flow and pressure. This

mechanism in its most simple version (disregarding

inertances, pressure wave transmission, reflections, etc.)

is described by the two element lumped model of Fig.1b:

the peripheral vascular bed is lumped into the total

peripheral resistance (TPR) and arterial compliances are

represented by C. At a given heart rate (HR), the

windkessel time constant, Twk = C©TPR, controls the ratio

between systolic and diastolic AP, SAP/DAP, and limits

pulse pressure.

The concept of a lumped TPR was fruitfully and

widely applied not only to the analysis of AP wave but

also to the modeling of the baroreflex AP regulation and

following this perspective, consequences were drawn

relevant to the formation of LF AP waves [4, 5].

However, in this way, important aspects of the arterial
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Figure 1. a) Sketch of arterial tree. b) Classical windkessel. c) PVD fed by a windkessel compartment. d) Two PVDs.
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tree conceived as a transport system may have been

overlooked. Namely, AP control is only a component of

distributed and hierarchically organized vascular

regulation mechanisms, whose principal targets should

include the maintenance of the optimal flows in the single

limbs and organs as well.

The competition of flow control in the many

peripheral districts can be assumed to create interferences

with and throughout the windkessel compartments of the

arterial tree. The aim of the present modeling work is to

explore the bases of these interactions analyzing whether

they contribute in transferring the well known LF

vasomotor activity to the formation of LF AP waves at

systemic level, without and with a triggering activity of

neural control mechanisms conveying LF waves to

vessels through the sympathetic outflow.

2. Modeling methods

Local regulation of flow in a peripheral vascular

district (PVD) was modeled by a non linear feedback

modulating local conductance. The feedback input is

based on the cube of a flow deficit computed as the ratio
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Figure 2. PVDs with different feedback types: a) delay; b) Van der Pol oscillator (see detail in Fig.3): c) relay.
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between the required flow, F0, and the actual one Fj(t).

For generality, various mechanisms were included in the

feedback, obtaining different PVD models, displayed in

Fig.2: a) a delay of the smooth muscle (pure delay and

time constant); b) intrinsic vascular oscillations (van der

Pol oscillator, see the detail in Fig.3); c) hysteresis of

myogenic responses (relay and time constant). The PVD

conductance Gj(t) is modulated around the nominal value

G0 by the feedback, so that a flow deficit causes

vasodilation. Finally, Fj(t) is the product of the driving

pressure and conductance.

Figure 3. Detail of the Van der Pol oscillator of Fig.2b.

Models were built with the Matlab graphic interface

Simulink and simulations carried out with the standard

ode45 integration algorithm. The arterial tree was

simulated assigning a compliance Cn to each node n

(node pressure derivative, P’n(t) = 1/Cn (flow balance))

and a resistance Rnm to each branch n-m (branch flow,

Fnm = 1/Rnm (Pn-Pm). The input flow, Fin(t), was either

constant or a square wave with a 20% duty cycle (200°ms

systole, 800 msec diastole); its average was generally

balanced to J F0 (J number of districts); only with the

relay PVD this value had to be augmented by a 6.7%. All

extensive quantities are normalized by the arbitrary PVD

size given by F0.

Branch resistances and the PVD nominal conductances

were dimensioned in order to impose a 100 mmHg mean

AP, subdivided into a 60 mmHg (P0) at the PVD and

equal pressure drops on each branch. Compliances were

dimensioned keeping the same total compliance at each

branching level (subdivided into many small compliances

as the branching order increases) and adapting the

compliance size in order to obtain a pulse of 120/80

mmHg, that corresponds to that of a windkessel with

Twk = 2 s. In this condition an equivalent time constant of

Teq = 2 s is assumed: the arterial tree thus adapted to the

main windkessel function of pulse buffer was tested as to

its interference features with the LF oscillations of the

PVDs. In the simple case of Fig.1c (a single windkessel

compartment with the passive resistance substituted by an

active PVD) the time constant can be readily

approximated by Teq = C1©G0; in this way it was possible

to explore a wide range of Teq values simply by varying

C1. The two PVD models of Fig.2d were dimensioned

with P0 = 60 mmHg, mean AP = 100 mmHg, C1 = C2,

Teq = 2 s.

3. Simulation results

All models displayed a range with active flow

compensation against AP changes in which self-sustained

oscillations at LF appeared. In all the three PVD types

this range was quite extended around the nominal P0 and

showed oscillations with a 10 s period between

approximately 2 F0 and 0.5 F0.
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Figure 4. Single PVD models of Fig.2c: a) delay PVD, b)

Van der Pol PVD, c) relay PVD. LF oscillations in the

PVD flow at varying Teq values.

Sufficient arterial compliances were shown to be

necessary to allow rhythmic activity. As shown in Fig.4,

in all the 3 models LF oscillations decreased to complete

extinction for Teq<2 s. This indicates that a windkessel

stiffer than required for the primary function of

conditioning the pulse pressure has also a secondary

effect in blunting vasomotion.

Further simulations demonstrated a general tendency

to phase opposition with 2 PVDs coupled to a common

feeding compliance and to maximum phase dispersion

with more. The case of 2 PVDs (model of Fig.2d) is

displayed in Fig.5. This simulation was carried out by

initializing the two identical PVDs to almost equal values

with a small difference of 1/1000. Accordingly the

oscillations in the PVDs are started in phase; however,

this is proven to be an unstable condition which is rapidly

lost in favor to phase opposition which is reached within

the first 50„80 s of the simulation. In all the three PVD
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types, phase opposition permits larger peripheral flow

oscillations; however, they are hidden by their negative

interference both at central (P1) and at peripheral (P2) AP

level (the residual ripple at double frequency is an artifact

of the model symmetry).
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Figure 5. Two PVD models of Fig.2d: a) delay PVD, b)

Van der Pol PVD, c) relay PVD. Spontaneous transition

to phase opposition of flows (lower panel, heavy and

light lines) and cancellation of LF AP waves (upper

panels). At t = 200 s (arrows) a LF neural drive disturbs

phase opposition and unmasks LF AP waves.

This behavior can be demonstrated to rely on basic

properties of the interactions with the feeding windkessel

compartments, in fact any phase delay is amplified by the

load of the preceding PVD (or PVDs) and the maximum

distribution efficiency is obtained with sparse phases.

Also the large peripheral oscillations permit a reduction

of the power needed to maintain the mean flow [6].

Up to now no neural drive was present, N(t) = 1.

Conversely, at t = 200 s (arrows in Fig.5), a modest LF

neural modulation was introduced,

N(t) = 1+0.3 sin(2r 0.1 t). This did not entrain the two

PVDs, but it was sufficient to disturb phase opposition,

disrupt the negative interference and unmask LF

oscillations in AP.

As to pulse pressure, note in Fig.5 the presence of a

normal systolic/diastolic oscillation in the systemic AP

(P1, upper panels, upper traces) and its virtual absence in

peripheral AP (P1, upper panels, lower traces) and flows

(lower panels): the classical windkessel function which is

superimposed to the investigated effect on LF.

4. Conclusion

It is proposed that vasomotion, arterial compliances

and neural drives are all essential elements in forming LF

waves in systemic AP. Probably this perspective would

cast new light in the comprehension of the physiological

and clinical meaning of short term AP and heart rate

variabilities.
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