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Abstract 

Most of the ECG wave boundaries detection 

algorithms are based on the matching of an one- 

dimensional detection function against a standard 

template computed from an expert controlled reference 

data set. In this paper, we propose to enhance the method 

by first stratifying the shapes of the detection functions in 

the vicinity of the waveform boundaries into K shape 

specific classes Cj (i=1,K) by means of a Kohonen self-

organizing neural network. We then compute a matching 

template for each category Cj and we extend the standard 

wave delineation algorithm to take account of these new 

templates. The method has been assessed on the CSE 

databases DS1 and DS3 for the determination of the 

onset of QRS. 

 

1. Introduction 

One of the most important ECG signal processing 

steps before feature extraction and diagnostic 

classification is waveform segmentation and boundary 

recognition, e.g. the estimation of the onsets and end 

points of the P, QRS and T waves. As for image 

processing, there is no standard or optimal way to 

estimate these wave boundaries. The most commonly 

used methods are threshold crossing, signal matching and 

template matching [1]. The latter consists in mapping the 

multi-dimensional time-varying ECG signals into a new 

one-dimensional time-varying detection function and 

then in matching this detection function with an 

amplitude-time template within some W(-M,N) window 

around the point where the boundary is expected [2]. The 

template is constructed from a learning set of E detection 

functions stemming from E different ECG recordings in 

which the wave boundaries have been recognized by 

human observers. The main limitation stems from the fact 

that such a template can only imperfectly represent the 

vast diversity of ECG waveform shapes. 

In this paper, we propose to stratify the shapes of the 

detection functions in the vicinity of the waveform 

boundaries into K shape specific classes Cj (j=1,K) by 

means of a Kohonen self-organizing neural network and 

then to compute a matching template for each category 

Cj. Then, in routine use, we first classify each ECG 

detection function into one of the Cj categories 

determined by the Kohonen network (unsupervised 

learning) and we identify the waveform boundary by 

matching the ECG detection function against the template 

corresponding to category Cj. 

2. Materials and methods 

2.1. Artificial neural networks inputs 

determination 

ECG and VCG signals are usually recorded using 3 or 

more leads simultaneously. For wave onset and end 

detection purpose, computer programs take advantage of 

this redundancy to map the multilead signal into a one-

dimensional time-varying detection function d(i) (i the 

sample number). The most widely used detection 

function is the “spatial velocity”. Assuming that the 

sampling rate is 500 samples/sec, then the most efficient 

detection function is the filtered spatial velocity SV(i) 

computed as follows [2]: 

SV(i)=( ¬( X’k(i)) 2 )1/2 (in µv/ms),  k=1,r 

where r is the number of ECG leads and 

X’k(i)=[2(Xk(i+4)-Xk(i-4))+Xk(i+2)-Xk(i-2)]/40 

For the stratification of the shapes of the detection 

functions, we then select a segment X of n points of SV(i) 

centred around the fiducial point we want to detect. These 

segments X form an n-dimensional vector that will 

constitute the inputs of the artificial neurons of the 

Kohonen network. 

2.2. Stratification of the shapes of the 

detection functions by means of Kohonen 

self-organizing maps 

Let us note E the number of ECGs constituting the 

unsupervised learning set, x1,..,xn the values of the 

detection function corresponding to the n points of 

segment X, X(x1,..,xn) the inputs to the Kohonen network 

and Wk(wk1,..,wkn) the weights of the synapses arriving 

on neuron k (figure 1). 
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Figure 1. 2D Kohonen map with pxq=36 output neurons. 

The network consists in an input layer of n input 

neurons and in an output layer of S output neurons [3]. S 

is usually chosen to be greater or equal to the number E 

of cases forming the learning set. The basic concept of 

the Kohonen algorithm then consists in associating each 

input to a class Cj and to display the output neurons 

according to a 2D map that highlights the similarities 

between the different classes. Inputs that are similar in 

the representation space will activate output neurons that 

are neighbours in the 2D map. In analogy with other 

standard automated classification methods, depending on 

the value of a learning parameter jf, when there are K 

classes, at the end of the training there will be either K 

output neurons or K groups of output neurons that will be 

activated. The Kohonen algorithm has self-organizing 

and input space topology representation properties.  

The basic steps of the Kohonen method are the 

following: 

Parameters initialisation 

1. Determination of the form (p,q) of the                

Kohonen map, the number of output neurons S=pxq, 

and the maximum number of iteration steps tmax.  

2. Initialisation of the weights wkj (k=1,S,  j=1,n) of the 

output neurons (small random values). 

Kohonen algorithm 

1. For ECG record X, choice of the winner neuron k 

such as: 

 || Wk-X || ø || Wj-X||,   j =1,S 

2. Adaptation of the learning parameters g(t) and 

V(j,k,t),  where: 

g(t) is a linearly decreasing learning function defined 

by: 

 0< g(t)<1, g(t)=g0 /(1+kg t)  

g0 is a constant, the learning rate kg is constant 

V(j,k,t) is a continuous neighbourhood function 

modelled by a Gaussian: 

 V(j,k,t)=exp[-d2(j,k)/2.j2(t)], where: 

j(t)= j0.(jf /j0)
t/tmax, d(j,k) is the city-bloc distance 

between the neurons j and k; j0 and jf are constants. 

The amplitude of V, determined by j2(t), decreases 

as the network reaches convergence. 

 

3. Adaptation of the neuron weights: 

Wj(t+1)=Wj(t)+g(t).V(j,k,t).[X-Wj(t)]  

4. Set t=t+1 and go to step 1 until t>tmax 

(presentation of another sample of the learning set; 

adaptation of the parameters g(t) and v(j,k,t), ….) 

The number of elements composing class Cj is 

obtained by counting and adding the number of times 

each output neuron corresponding to class Cj has been 

elected. 

2.3. ECG wave boundaries recognition 

Signal matching assumes that we first compute a 

standard waveform t(k) from a learning set of E detection 

functions SV(k) with known fiducial points. The method 

then tries to fit a [-M,+N] time-window of an unknown 

function SV(i) with template t(k) and searches for the 

minimum i0 of the matching function MF(i) within a 

given time interval [2]:   

                          N 

            MF(i)  =¬  [SV(i+k)-t(k)]2/w2(k),             (2) 

                         -M    

where w2(k) is a weighting function usually computed as 

being the variance of the learning set detection functions 

at point k. 

Point i0, for which MF(i) is minimum, will be taken as 

boundary. The algorithm then searches [2] for the first 

local maximum H and minimum L following i0. This 

procedure is eventually repeated until finding the first 

local minimum which satisfies the following three 

criteria: 

(i)    MF(L)<R   where R=14(N+M+1) µv  

(ii)   MF(L)/MF(i0)<15 

(iii) ｡L-H｡>12 ms. 

If no local minimum L satisfying these criteria is found, 

i0 is retained.  

2.4. Learning and Test sets 

In this paper, we present only the results for the 

determination of QRS onset. For training, we have used 

the 125 first ECGs of the so-called CSE artificial ECG 

library Data Set 1 (DS1). For testing, we have used both 

the 155 ECGs of CSE DS1 (125+2*15 « repeated » 

beats) and the 123 ECGs of Data Set 3 (DS3) of the CSE 

Multilead Database. 

The detection functions SV(i) were computed from the 

orthogonal (X,Y,Z) components of the 15-Lead ECG 

signals. Segment X was empirically selected by taking 

the 51 sample points before the first spatial velocity peak 

of the filtered detection function. 

The templates were computed from DS1 by taking the 

CSE referees waveform recognition points as the golden 

standard. 
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3. Results 

3.1. Training set (DS1) results 

At the end of the classification of CSE DS1 we 

obtained 6 classes that are displayed hereafter in figure 2. 

Figure 3 displays the output neurons weights for two 

different values of the learning factor jf. For jf = 2.5, each 

class Cj is represented by one single neuron. The weights 

of the other 138 output neurons are almost close to zero 

(figure 3b). For jf = 0.5, much more output neurons are 

elected during the Kohonen unsupervised learning 

process (figures 2a and 3a). The classification results 

interpretation is more complex. It requires a visual 

interpretation and the design of some decision rules to 

regroup the different winners by defining class centers 

and the maximum admitted distance to assign an output 

neuron to the class represented by the class center.  
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Figure 2. (12x12) Kohonen map of DS1, for g0 =1, 

j0=22, kg =0.01, tmax=4000 and for two different jf 

values. 

Figure 4 presents the error curve of the differences 

between the input data and the weights of the winning 

neurons in function of the number of iterations for two 

values of jf. At the beginning, the error values are almost 

identical, but then the error values decrease as more and 

more output neurons are selected by the classification 

process. 

Table 1 shows the optimal template windows 

dimensions for each class Cj. 

 

class 1 2 3 4 5 6 
M 3 6 3 3 4 8 
N 4 4 3 2 4 7 

Table 1: Template windows dimensions. M and N 

respectively yield for the number of sample points before 

and after QRS onset and end. 

Figure 5 and 6 display the templates computed from 

DS1 and the histogram of the sample points differences 

between the template matching results and the referees 

references. The standard deviation SD for the whole Data 

Set 1 (N=155) is only 3.28 ms. 
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Figure 3. Weight vectors for two different values of jf . 

3.2. Test set (DS3) results 

The number of cases respectively assigned to classes Cj, 

j=1,6, are 16, 3, 18, 58, 7 and 23. The onset of QRS 

delineation errors are presented in figure 7. Standard 
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deviation SD is 4.59ms (N=123). 

 
Figure 4. Error between input data X and the weights of 

the winners for two values of jf. The horizontal axis 

represents the number of times each input vector has been 

classified (maximum is 4000/125=32 ). 
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Figure 5. Spatial velocity templates constructed from 

DS1. The vertical line denotes the QRS onsets 

determined by the CSE referees. The horizontal axis is 

graduated in sample points (2 ms differences). 

4. Conclusion 

Using unsupervised learning to stratify the      

detection functions significantly improved (~20%) the 

precision of the determination of the onset of QRS. Our 

work thus could encourage further studies to improve the 

determination of the other fiducial points then the onset 

of QRS. A more precise determination of the exact 

number of detection function classes would however 

require much larger databases than CSE DS1 and DS3. 
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Figure 6. Onset of QRS delineation errors for DS1 
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Figure 7. Onset of QRS delineation errors for DS3 
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