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Abstract

The objective of this work is to segment the human left

ventricle myocardium (LVM) in contrast echocardiography

imaging and thus track it along a cardiac cycle in order to

extract quantitative data about heart function.

Ultrasound images are hard to work with due to their

speckle appearance. To overcome this we report the

combination of active contour models (ACM) or snakes and

active shape models (ASM). The ability of ACM in giving

closed and smooth curves in addition to the power of the

ASM in producing shapes similar to the ones learned, evoke

to a robust algorithm. Meanwhile the snake is attracted

towards image main features, ASM acts as a correction

factor.

The algorithm was tested independently on 180 frames

and satisfying results were obtained: in 95% the maximum

difference between automatic and experts segmentation was

less than 12 pixels.

1. Introduction

Heart diseases are one of the most common death causes

of the last decades. For this reason, after myocardial

infarction, it is important to have tools that allow to evaluate

the heart function. Left ventricular wall movement can be

used to this end but it is not accurate enough. Additional

information about the myocardial perfusion (blood flow)

should be obtained in order to determine if we have a

reversible or an irreversible heart disfunction.

The most widespread image techniques for myocardial

perfusion analysis are SPECT, PET and MR. Although they

give high quality information about myocardial perfusion

they are not widely available in most hospitals because of

their cost. Moreover, the use of ionizing radiation makes

them invasive to the patient. The availability, low cost

and non-invasiveness of echocardiography, in addition to

great progresses in microbubble contrast agents during last

decade, have projected the contrast echocardiography [5]

as a powerful tool in the myocardial assessment. However,

it is difficult to get conclusions directly from images.

Figure 1. Frame of Contrast Echocardiography. The U-

shaped structure is the myocardium to be segmented.

Quantitative parameters must be extracted to interpret the

sequence of perfusion images. This is done by tracking

myocardial points along the cardiac cycle meanwhile the

process of destroying the microbubbles (using a high

energy pulse) and reperfusing again is repeated. Some

approaches have been done in the framework of tracking

myocardial points but they are reduced to some ROIs which

are actualized taking into account the optical flow of the

sequence [7],[3]. In [4], it is proposed to segment the

ventricle walls by using ACM and ASM. The authors model

the shape with the first M coefficients of its discrete cosine

transform instead of the raw coordinates. The present work

has similarities to them. We segment the full myocardium

in order to track the whole contour. To achieve it we also

combine ACM and ASM, this allows us to take advantage of

the experts knowledge and it is motivated because manual

segmentation of the myocardium in the whole cardiac cycle

(100 frames approximately) is highly time consuming and

suffers from inter- and intra-observer variability.
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2. Background

2.1. Active Contour Models (ACM) or
Snakes

A snake [6] can be thought as a set of nodes St =

{(xs,t, ys,t)
M

s=1
} which represent an elastic discrete curve.

It evolves in time with the objective of minimizing the sum

of its internal and external energies:

E(u) = Eint(St) + Eext(St)

Eint imposes the smoothness of the curve and Eext attracts

it towards image main features (edges in case of contour

segmentation). Given a node in the snake (xt, yt) it will

evolve according to

{
xt+1 = (A + γId)

−1
(γxt + Fx(xt, yt))

yt+1 = (A + γId)
−1

(γyt + Fy(xt, yt))
(1)

where A (the scatter matrix) codifies the smoothness

constraints, γ affects to the speed convergence and F =
(Fx, Fy) are the external forces that make the nodes move.

Depending on the F that we synthesize, snakes behavior

will vary. In this text we propose external forces that give

a certain coherence between the normal directions of the

snake in its nodes and the gradient directions of contours

where each node should be attracted. These forces are:

F (x, y) = −〈−→vc ,−→vs〉∇D(x, y) (2)

where D is a distance map, −→vc(x, y) is the gradient direction

of I in the nearest edge point to (x, y) (in distance D) and
−→vs(x, y) is the normal vector to the snake, fixed one of the

two possible, at the point (x, y). Notice that the same way

we previously have created the distance map D, we have

to create an angle map DΨ so that, at each point (x, y) we

know the distance to the nearest edge point and the gradient

direction of it [8].

Let −→vc and −→vs be unitary vectors,

〈−→vc ,−→vs〉︸ ︷︷ ︸
K

=





(0,1] if angle(−→vc ,−→vs) < π/2
0 if angle(−→vc ,−→vs) = 0
[-1,0) if angle(−→vc ,−→vs) > π/2

The term K makes the snake be attracted by contours that

have similar orientation (angle between −→vc and −→vs < π/2)

and rejects it from contours which have opposite directions

(angle > π/2). In case that K = 0, the only forces that act

in these points are internal forces.

Using these forces we obtain quite good results but they

are not enough to reach our objective. ACM are, in their

nature, local methods, the support of a global method is

needed.

2.2. Active Shape Models (ASM)

This technique allows us to build compact models of

shape by capturing the statistics of sets of labelled points

in a set of training images. Once the model is built, only

plausible shapes (similar to the ones in the training set)

can be obtained [1]. Having N training images, manual

segmentation is performed in every image Ij . Let s̃j =

{(x̃j
i , ỹ

j
i )}

M
i=1 be the ordered set of landmark coordinates.

We align s̃j to a reference shape s0 (s0 = s̃1, for instance)

by applying a transformation sj = Lr,θ,T (s̃j) that scales

(r), rotates (θ) and translates (T = (Tx, Ty)) s̃j . This

allow us to capture the intrinsic variation between shapes

(avoiding similarities) [2].

Let {(xj
i , y

j
i )}

M
i=1 be the aligned coordinates of the j-th

training image (j = 1, . . . , N). For every j we construct

the vector

Xj = (xj
1,yj

1,xj
2,yj

2, . . . ,xj
M,yj

M)

by concatenating the coordinates of the points so we get

N observations in the R
2M space. Applying a PCA to

the data, we reduce the dimensionality while maintaining

relevant information. Any shape in the training set can now

be approximated using the mean shape X = 1/N
∑N

j=1
Xj

and a linear combination of the first m < M modes of

variation

X = X + Pb (3)

where P = (P1 P2 . . . Pm) is the matrix of the first

m modes with PT P = Id and b = (b1, b2, . . . , bm) is the

shape parameter.

If we have an aligned shape X̃ and want to find the most

similar plausible shape, we just have to project it into the

space to get the parameter b

b = PT (X̃ − X) (4)

and ensure that b live into a certain valid m-dimensional

hyperbox. Then the plausible shape is exactly are (3).

3. LVM Segmentation

As we told before, our purpose is to segment the LVM

(Figure 1) by combining methods exposed in sections 2.1

and 2.3. The procedure is divided in three parts: First

of all the model is trained. Then we initialize the snake

paying special attention to the case of the first image of the

sequence. Finally we explain how the snake evolves.

3.1. Training the model

To train the model, we took a training set of 50 images

extracted from 4 different cardiac cycles which covered

174



Figure 2. 2nd and 3rd modes of variation of the shape

model.

a wide range of shape variation and asked an expert to

segment them. 100 landmarks were marked at every image

and, after having applied the PCA on the aligned data, we

got a shape model (3) with 9 principal variation modes

that explained the 98% of the shape variation. Figure

2 shows the effects of varying second and third modes.

Notice, for instance, how the second and third modes model

the thickness of the myocardium in different locations.

ASM also controls that never downside contour surpass the

upside one.

3.2. Initialization of the snake

In order to get good results, a first step of preprocessing

must be done to smooth the speckle appearance (typical

in ultrasound images) but preserving as much as possible

the image contours. For this reason we used an anisotropic

diffusion filter [9]. An example is shown in Figure 3.(a)

To avoid the snake falling into a local minimum, the

initial one must be placed next to the desired result. As

initial snake S0 we take the mean shape X of the model in

which we have marked 4 special landmarks (Figure 3.(b)).

Then we warp X 7−→ S0 so that these points can fit 4 key

points found in the target image I(x, y). Basically these

are the two corners (CL and CR) and the top (internal TI

and external TE) of the myocardium as shown in Figure

3.(c). To find the corners we use the Harris Corner Detector.

Once found, we look for the most significant gradient of

I(x, y) along the line defined by points C = (CL + CR)/2
and T , where T is the top point of the sectorial ROI that

contains the echocardiogram, this gives us TI . As we could

observe in most of the frames, the point TE remains almost

fixed, so we consider it fix. Now that we have placed S0

(Figure 3.(d)), it is ready to evolve according to equation

(1). Notice that when instead of working with a single

frame we are performing LVM tracking, this can be used

to segment the first frame I0 and, for the other frames In+1

we use Sn+1
0 = Sn

k as initial snake (where Sn
k is the result

of the previous frame).

a) b)

c) d)

Figure 3. Filtered image a). Mean shape X b). Key points

found in the target frame c). Initial Snake: mean shape

warped to fit the key points d).

3.3. Controlled evolution of the snake

Given the snake at time t, St = {(xs,t, ys,t)
M

s=1
}

we predict the new position of the snake nodes S̃t+1 by

applying eq. (1). We correct S̃t+1 looking for the most

similar valid image given by our shape model. First of

all, we have to align S̃t+1 and then project it into the

shape space to get the parameters b as in (4). Then we

get the plausible shape by (3) and finally, to get the next

snake St+1, we dis-align X . This can be condensed by the

following equations:

{
S̃t+1 = (A + γId)

−1
(γSt + F )

St+1 = L−1

r,θ,T [X + PPT (Lr,θ,T (S̃t+1) − X)]
(5)

If we iterate the process, once evolving followed by

correcting, we realize that the shape constraints given by the

shape model are too strong and hardly lets the snake search

for new positions. To solve this we apply the corrections

every P steps. In our case we used P = 2, but this depends

on each application.

4. Results

Our images were acquired with an Agilent Sonos 5500

(Andover, MASS) scanner and the contrast used was

Sonovuer. Visualization was performed by the Power-

Angio technique.

To test our algorithm, we took 180 images of dimension

(480 x 385), from 4 cardiac cycles, different from the 50

used to create the training set and applied (5) to each of
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them independently. When we compared the results to the

experts segmentations we found that in 95% of the cases the

maximum difference reached was less than 12 pixels and

the mean difference less than 4 pixels (Figure 4). Errors in

segmentation are caused basically by a wrong initialization

of the snake. In some frames, myocardium corners are not

well defined (because of the image noise) and Harris corner

detector can not deal with this. Another reason could be

that the shape we are trying to segment do not belong to the

learned shapes. In Figure 5 we show the evolution of the

initial Snake under the correction effects of the ASM.
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Figure 4. Maximum difference a) and mean difference b).

5. Conclusions

Finding a concrete shape in an image when all

information is not available or the present is corrupted can

be extremely difficult for a snake. This is precisely our

case and is due to the fact that it is a local method of

segmentation. Each node evolves according to an external

force and some smoothness constraints in its neighborhood,

but it does not take into account information about distant

nodes. Despite the external forces we have introduced can

guide each node more coherently, some global information

must be used. This is the contribution of the ASM. They

take into account information about all nodes to act over

them. So we conclude by pointing that meanwhile snakes

predict the position of the nodes, ASM is able to rearrange

them so that only plausible shapes can be retrieved and thus

the target structure is recovered.
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