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Abstract

A portable GSM ECG with GPRS communication was
developed with an internet database for the on/off-line
analysis of large amount of ambulatory ECG
(www.bion.hu). 3 studies were performed determining
the role of nonlinear heart rate dynamicity in the
separation of various disease groups (sudden cardiac
death in CHF and in post-infarction (post-MI) patients,
malignant ventricular rhythm disturbances in post-MI
groups. The Haar wavelet analysis (wavelet SD by scale
parameters) showed a good separation in the 3-5 scale
range. The multivariate discriminant models with input
values of a,, o, B and the approximate entropy showed a
good separation (Wilks’ statistics: p<0.001) of the
patients’ groups. The frequent, internet based ECG
monitoring would be help in the individual
cardiovascular risk management.

1. Introduction

The individual cardiovascular risk would be calculated
by various methods, the aim of our study was to predict
the outcome by nonlinear beat-to-beat long term
ambulatory ECG data analysis. In this preliminary study
the authors follow their works in the telemedicine field
with wireless ECG [1,2]. Our telemedicine information
system is called originally CyberECG, but the translated
Hungarian name, “HeartSpy” better represents one of the
most important feature, namely the online monitoring of
the extended length (days or weeks) ambulatory ECG via
the internet. Apart of this, the offline nonlinear beat-to-
beat analysis is served for the patient’s risk clusterization,
which determines the telemedicine managing strategy.
Different nonlinear methods — multiresolution wavelet-
[3,4], spectral-, [5,6] Poincaré plot- [7,8], power-law-
scaling- [9], detrended fluctuation- [4,10,11] and
approximate entropy-analysis [12-14] — were used for
heart rate time-series analysis and morbidity/mortality
prediction [15,16]. Some special patient groups, the
chronic heart failure (CHF) and postinfarction (post-MI)
patients with or without sudden cardiac death (SCD),
post-MI patients with or without malignant ventricular
rhythm events, were chosen in the present study.
Multivariate discriminant analysis was performed with
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input values of these nonlinear parameters, and the
mortality or other primary events were the output values.
The patients were clusterized by this way to low or high
risk groups, and the medical management (e.g., frequency
of long-term ECG monitoring) is planned due to this
decision.

2. Method

2.1.  Wireless ECG information system

Figure 1. shows the whole system. The portable, pocket-
sized measure device communicates by a GSM-GPRS
route. Its operation could be changed “Over The Air”
(OTA) from one to twelve channel ECG. The high
resolution (24 bit, 0.5 ms sampling rate) full digital ECG
recorder sends the compressed data via wireless network.
The size of each ECG pocket is 120 byte, the averaged
communication bandwidth between 56 and 118kbit/s.
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Figure 1. The CyberECG System.

The WEB server contains the ECG Knowledge- and
Data-base, and broadcasts the ECGs to the medical users.
The medical staff could real-time, continuously monitor
the patients with PC, or mobile phone.

Computers in Cardiology 2003;30:209-212.



2.2.

Haar wavelet analysis

The multiresolution wavelet analysis (MWA) is based
on the transforming the discrete time sequence of R-R
intervals into a space of wavelet coefficients. The method
proposed Thurner and Ashkenazy [3,4] with the Haar
wavelet was used. The coefficients are calculated by:

Woun(s) = 272 2= 1y (271-n)

where the scale variable m and the translation variable
n are nonnegative integers, and M represents the total
number of R-R intervals analyzed. The wavelet-
coefficient standard deviation reflects the variability of
the signal, as a function of scale:
(M) = [1/(N-1) 4=Z" (Winn(8)- Wini(5)))*]"

where N is the number of wavelet coefficients at a
given scale m.

Calculations

Poincaré plot analysis
The quantitative analysis is based on fitting an ellipse
to the Poincaré (R-R, vs. R-R.)) plot (Figure 2.).

R-Ri) 1100 [rns]

axis?

sSD1

axis1

Centroid

400 [msz] R-Rii+13

Figure 2. The Poincaré (R-Ry vs. R-R.;) plot.

First the centroid was determined (mean R-Ry / R-R+)),
with the two axis (longitudinal = axis 2, perpendicular =
axis_1). STD-1 represents the continuous long-term,
STD-2 the instantaneous RR-interval variability
calculated as the standard deviation of data points passes
through that axis direction. Wmax-TD is the distance
between the centroid and the averaged maximum of
instantaneous interval variability.

Power-law-scaling Analysis

In our studies an autoregressive model (model order:
20) was used to estimate the power spectrum densities.
The heart rate time series were partitioned into 512 R-R
interval segments. The point power spectrum was
logarithmically smoothed in the frequency domain and
the power integrated into bins spaced 0.0167 log (Hz)
apart. A robust line-fitting algorithm of log (power) on
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log (frequency) was applied to the power spectrum
between 10 and 1072 Hz and the slope of this line (B) was
calculated.

Detrended Fluctuation Analysis (DFA)

The slope of the line relating log F(n) to log n
determines the scaling exponent (self-similarity parameter
= o ) was calculated with detrended fluctuation analysis
(DFA) ( for short-term (<11 beats)= a; and for long term=
az). The integrated NN time series are divided into
windows of equal length, n. In each window of length n, a
least-squares line is fitted to the data. The y coordinates
of the straight line segments are denoted by yn(k). The
integrated time series were detrended by subtracting the
local trend, yn(k), in each window. The root-mean-square
fluctuation of this integrated and detrended series is
calculated. The computation is repeated over all time
scales (window sizes) to obtain the relationship between F
(n) and the window size n. A linear relationship on a log-
log plot indicates the presence of scaling. The DFA
calculations were applied to the entire recording from
averaged segments of 6000 R-R intervals.

Approximate Entropy

The approximate entropy (ApEn) quantifies the
unpredictability of fluctuations in a time series. A time
series containing many repetitive patterns has a relatively
small ApEn, a less predictable (i.e., more complex)
process has a higher ApEn. ApEn(SN,m,r) = In (Cm (1)/
Cm+1 (r)), where SN, the sequence, m specifies the
pattern length, r defines the criterion of similarity, Cm (1)
is the quantity of the fraction of patterns of length m that
resemble the pattern of the same length that begins at
interval i. The ApEn was calculated for 4000 heart rate
data point. Fixed values for two input parameters, m and r
must chosen to compute the ApEn of the sequence, ApEn
(m,r,N), where m, specifies the pattern length (m=2), and
r defines the criterion of similarity (r = 20% of the
standard deviation of the data sets). The fast algorithm of
Fusheng [17] was used.

Multivariate discriminant analysis (MDA)

The SPSS statistical package was used for MDA.

The discriminant score was calculated based on the
unstandardized discriminant function coefficients. The
canonical correlation measures the degree of association
between the discriminant scores and the groups. The
Wilks’ lambda is the ratio of the within-groups sum of
squares to the total sum of squares, and this parameter
was used for the stepwise selection of input values.
TheWilks’ lambda was calculated for significance of the
discriminant functions.



3. Study population

3.1.  Study-1.

The multiwavelet analysis (MWA) based on the data of
27 CHD patients with SCD (CHD_SCD+) and 27 without
it (CHD_SCD-), selected from a 168 CHF patients
population monitored for 24 hours in every four weeks
for six months. The inclusion criteria were: telemedicine
ambulatory ECG (ta-ECQG) recordings at least 4 weeks
before the SCD, absence of acute myocardial infarction in
the previous 1 year. SCD was defined as death occurring
within 15 minutes of a change in symptoms or during
sleep. Clinical features of the two groups: male/female
(Group-A: 14/13, Group-B 14/13; age: 62.4+-7, 59.7+-6;
CAD: 22, 21; other cause: 5, 6; NYHA II. class: 18, 17;

NYHA 1II. Class 9, 10; EF: 36.2+-6, 36.9+-5,
respectively).
3.2. Study-2.

In the second study two different multivariate (3 groups)
discriminant models have been developed for the high
risk patients: SCD in CHF (Group-1, N=33), no SCD in
CHF (Group-2, N=52); SCD in postinfarction (post-MI)
patients (Group-3, N=29), no SCD in post-MI (Group-4,
N=50) and matched healthy control (Group-5, N=50 vs.
CHF groups, Group-6, N=50 vs. post-MI groups). There
were no differences in the prevalence of hypertension,
diabetes, ejection fraction, the use of beta blockers and/or
ACE inhibitors. The frequency of ta-ECG was 24 hour
weekly and lasted for 12 months.

3.2. Study-3.

The study population consists of 78 postinfarction
patients with ejection fraction <35%, who had more than
6000 ventricular premature beats during 48 hour ECG
registrations. During the 12 months, 4-weekly
telemedicine observation 19 of them had sustained
ventricular tachycardia (VT) or fibrillation (VF) (Group-
A), 59 had not (Group-B). The normal-to-normal beat
(NNT), the interectopic- (IIT), and the coupling interval
(CIT) were determined from the last 24 hour registration
before the arrhythmic event. The input nonlinear
parameters were determined from the entire data set for
NNT, and from the 6000 IIT and CIT series.

4. Results

4.1.  Study-1.

The phase-space of the wavelet-coefficient standard
deviation and the scale parameters (Figure 3.) showed an
excellent separation in the scale-range of 4-6 between the
groups: in that region, the average scaling exponents was
0.14+-0.04 for Group-A, and 1.22+-0.27 for Group-B
(p<0.001).
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Figure 3. Standard deviation of wavelet coefficient vs.
scale m.

4.2. Study-2.

The input values were the SD-1, SD-2 and Wmax-TD
from the Poincaré plot; al and a2, calculated with DFA,
B, the slope of a line fit by a least-squares criterion to a
log-log plot of power versus frequency for frequencies
between 0.001 and 0.1 Hz and the ApEn. Table 1.
represents the descriptive statistics of the parameters in
the CHF groups.

Table 1. Descriptive statistics of parameters of CHF
groups.

Control CHF-SCD+ CHF-SCD-
SD-1 21.4 +-8.60 14.30 +-7.10 18.50 +-6.70
WmaxTD 83.9 +-47.0 3490 +-11.4 93.40 +-23.5
o 1.07 +-0.40 0.84 +-0.13 0.97 +-0.18
o2 1.02 +-0.30 0.72 +-0.13 0.89 +-0.20
B -1.30 +-0.50 -1.74 +-1.10 -1.70 +-0.90
ApEn 1.04 +-0.12 0.79 +-0.09 0.89 +-0.12

A three-group discriminant analysis was performed
with two function (F-1 and F-2). For F-1 the eigenvalue
was 47.98, the percent of variance 99.58, the canonical
correlation 0.98, the Wilks’ lambda 0.017 , chi-square
601.09, p< 0.00001, for F-2 the values are 0.203, 0.42,
0.411, 0.83, 27.26, 0,0001, respectively.

Table 2. represents the descriptive statistics of the
parameters in the post-MI groups.

Table 2. Parameters of post-MI groups.

Control Post-MI- Post-MI-SCD-
SCD+

SD-1 19.2 +-7.20 13.92 +-4.20 17.40 +-2.10
WmaxTD 81.6 +-11.3 51.11 +-10.8 69.40 +-14.3
o 1.05 +-0.36 1.8 +-0.10 1.16 +-0.11
o 1.01 +-0.26 0.67 +-0.16 0.84 +-0.23
B -1.24 +-0.33 -1.62 +-2.40 -1.41 +-1.95
ApEn 0.99 +-0.17 0.85 +-0.19 0.96 +-0.21

For the post-MI groups the statistical parameters of F-

1: the eigenvalue was 124.35, the percent of variance
97.84, the canonical correlation 0.996, the Wilks’ lambda



0.021 , chi-square 778.35, p< 0.00001, for F-2 the values
are 2.75, 2.16, 0.856, 0.266, 167.22, 0,0001, respectively.

4.3. Study-3.

The same six nonlinear variables of NNT, IIT and CIT
were used in the multivariate discriminant analysis. After
the stepwise selection, 6 parameters remained from the
18: x;= 0;-NNT, X2 = a,-IIT. X5= 0,-CIT. X4= WmaxTD-IIT Xs.
= ApEn-IIT x¢= ApEn-CIT.

The results of the two-groups discriminant model: the
eigenvalue was 91.47, the canonical correlation 0.994, the
Wilks’ lambda 0.0108 , chi-square 332.726, p< 0.00001.

5. Conclusions

Some nonlinear heart rate dynamicity measurement
was performed repeating the works of other authors. The
results are our presented preliminary study is using in our
telemedicine wireless ECG system for a year. The
patients are categorized into various disease groups (or to
healthy) with the calculation of discriminant score
determined by the multivariate models related to their
clinical feature (e.g. pts after myocardial infarction, with
chronic heart failure, or rhythm disturbances). Using
these scores as predictor values, the telemedicine ECG
management would be designed. The worsening indicator
parameters indicate immediate change of patient
management (re-checking the clinical signs and
symptoms, change of therapy, hospital admission). In the
case of borderline decision situation (mild change of the
indicator values) the ambulatory registration will extend
for longer time or repeat more frequently.
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