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Abstract 

This study is focused on the removal of artifacts due 

to Cardio Pulmonary Resuscitation (CPR) on 

Ventricular Fibrillation ECG signals. The aim is to 

allow a reliable analysis of the cardiac rhythm by an 

AED or the defibrillation success analysis during CPR 

episodes. The research is based on a human model for 

the CPR artifact and the VF ECG signals. The test 

signals were generated adding the CPR artifact (noise) 

to the VF (signal), with a known Signal-to-Noise Ratio 

(SNR). The results of the adaptive Kalman filtering have 

been obtained according to three different levels: SNR 

improvement; Sensitivity improvement in the AED 

algorithm for the detection of shockable rhythm; and 

Variations of the significant frequencies, compared to 

the values obtained with the original VF signals. In all 

cases, remarkable results have been achieved regarding 

to the efficiency in the artifact removal. 

 

1. Introduction 

The second and third link in the adult Chain of 

Survival defined by the AHA (American Heart 

Association), are early CPR and early defibrillation, 

respectively [1]. However, the chest compressions and 

the ventilation during CPR generate a significant and 

typical artifact on the ECG signal, so the AED 

guidelines require the interruption of the CPR during 

the analysis. Unfortunately, several works point up the 

adverse effects of this suspension [2,3] and affirm the 

need to reduce this elapsed time to the minimum. 

Evidently, if the CPR artifact could be accurately 

removed from the ECG signal, it will clearly improve 

the AED efficiency. 

From another approach, a significant number of 

studies have been focused on obtaining non-invasive 

methods to predict the defibrillation success. Their 

objective is to avoid an excessive number of shocks, 

which can increase the severity of the post-resuscitation 

myocardial dysfunction [4]. Given that the predictive 

information is located in the VF signal, it becomes 

essential to filter the interference before the ECG signal 

analysis. 

2. Materials and methods 

2.1. Background 

Previous studies have been already performed using 

a porcine model for collecting CPR artifact and VF 

signal records [5-7]. It is observed that the CPR artifact 

spectral components are clearly distinguished from the 

VF signal. Therefore, the CPR artifact removal can be 

accomplished by linear filtering. 

More advanced studies [8-10] have introduced a 

human model for the VF signals, maintaining a porcine 

model for the CPR artifacts. In this case, there is a 

remarkable overlapping between both the artifact and 

the ECG signal spectral distribution. For this reason, 

LMS (Least-Mean-Square) adaptive filtering techniques 

have been applied with good results in artifact removal. 

But, two main limitations are attributed to the described 

methods. A piston device is used to induce the CPR 

artifacts, giving a constant fundamental frequency and 

also a constant compression depth. Besides, these 

techniques require reference signals such as the 

compression depth and the transthoracic impedance, 

strongly correlated to the CPR artifact, and not easily 

available in a real-life situation. 

Our contribution is to face the CPR artifact removal 

applying a human model for both the CPR artifact and 

the VF signal. Also, the applied technique, based on an 

adaptive Kalman filter, avoids the need for reference 

signals. 

2.2. Working database 

Unfortunately, the Emergency Services sometimes 

arrive when the patient presents already an asystolic 

rhythm. If the AED first analysis results in a non-

shockable rhythm diagnosis, it is required to start the 

CPR. At this time, the signal that is being recorded is 

directly the CPR artifact. Thus, two Electrophysiology 

specialists from the Basurto Hospital of Bilbao (Spain), 

certified 17 CPR records, which were processed with a 

sampling frequency of 250Hz. 

200 coarse VF records were obtained from the 

human VF rhythms database that was developed by 

Osatu S. Coop. for testing the AED algorithm for the 
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detection of shockable rhythms. Employing decimation 

and interpolation techniques, all the VF records were 

processed with the sampling frequency of 250Hz. 

Finally, each record has been filtered (using a band 

pass filter 0.5-30Hz) to suppress DC, baseline drifts and 

possible electrical network interference. 

2.3. Preliminary spectral analysis 

The spectral characteristics of the 17 CPR artifacts 

have been analyzed using a Welch estimator with a 

Hanning window of 4.8 seconds. From the study of the 

SPD (Spectral Power Density) of each record, it can be 

confirmed that due to the periodic pattern of the CPR 

artifact, the power is distributed around the fundamental 

frequency and its harmonics. The same spectral analysis 

has been developed for the 200 VF records.  

Fig. 1 shows the averaged SPD for all the CPR 

artifact and all the VF windows, showing a clear 

overlapping. Moreover, taking into account the strong 

SPD variability of the signals under study, an adaptive 

filtering technique is proposed to distinguish and 

remove the CPR artifact from the VF ECG signal. 
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Figure 1. Averaged SPDs for all the CPR artifact and 

VF signal windows 

2.4. Test signals 

The signals for testing the proposed filter have been 

generated by adding the CPR artifact to the pure VF 

signal with a fixed noise level. SNR (Signal to Noise 

Ratio) of –10, -6, -3 and 0dB have been considered to 

obtain the set of test signals. 

2.5. Description of the designed Kalman 

filtering technique 

The CPR artifact removal from the VF signal by 

means of adaptive Kalman filtering assumes that the 

studied system can be described by two state space 

matrix equations: 

• The state transition equation: 

( ) )1()( )1(1 +++=+ nwnsnAns  (1) 

• The observation equation:  

)()( )()( nunsnHnz +=   (2) 

The M-vector s(n) contains the values of the M 

parameters that define the state of the system at the time 

n and is, thus, the state vector. The (M x M) matrix A(n) 

is the state transition matrix and the (L x M) matrix H(n) 

is the observation matrix. The M-vector w and the L-

vector u are uncorrelated, zero mean and white, with 

covariances W and U, respectively. 

Optimal estimates of the state vector s(n) are 

generated recursively from the sequence of noisy 

observations z(n) using the following equations. The 

notation ( )jnŝ  reads “the estimate of s(n) given data 

from sample 0 to sample j”. 

• The estimation equation:  

[ ])1(ˆ )()( )()1(ˆ)(ˆ −−+−= nnsnHnznKnnsnns             (3) 

• The prediction equation: 

)11(ˆ )()1(ˆ −−=− nnsnAnns                              (4) 

• The Kalman gain equation: 

[ ] 1 )()( )1( )( )( )1()( −+−−= nUnHnnVnHnHnnVnK
TT    (5) 

• The error covariance equations: 

)()( )11( )()1( nWnAnnVnAnnV
T

+−−=−                    (6) 

)21( )1( )1()21()11( −−−−−−−=−− nnVnHnKnnVnnV   (7) 

Where: 

{ }TnnsnsnnsnsEnnV ))(ˆ)(( ))(ˆ)(( )( −−=                         (8) 

{ }TnnsnsnnsnsEnnV ))1(ˆ)(( ))1(ˆ)(( )1( −−−−=−           (9) 

The system matrices A, W, H, and U may be time 

varying, but they are assumed to be known a priori. 

In our case, the observed signal is identified as the 

noisy observation vector z(n) and, as at each time n 

there is a unique observation, then L=1. The system 

state transition and observation equations have been 

described, assuming that the CPR artifact as well as the 

VF signal can be modeled by a sinusoidal function of a 

known angular frequency のa and のs, respectively. 

The system state variables are identified as: 
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where Aa, As, la and ls are the CPR artifact and the VF 

signal amplitudes and phases, respectively. They are 

assumed constant so that the state transition matrix is 

identified with the (4x4) identity matrix. From this 

approach, the observation matrix is identified at each 

time with: 

[ ]nsennnsennnH ssaa ωωωω −−= coscos)(       (14) 

The covariance diagonal (4x4) matrix W and (1x1) 

matrix U are assumed to be constant all through the 

iterative process and their values have been 
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experimentally fixed. It has been checked that, in a wide 

range, they present a very little influence on the filtering 

iterative process. 

The application of the iterative process to the 

proposed modeling requires knowing のa and のs. Both 

angular frequencies are assumed constant all through 

the time window of 4.8s and are estimated from the 

considered window SPD. The のa value is the angular 

frequency in which the SPD presents a maximum in the 

0-2.8 Hz interval; のs is calculated as the angular 

frequency in which the SPD presents a maximum 

amplitude peak in the 3.2-7.5 Hz interval. 

3. Results 

For the global evaluation of the proposed filtering 

technique, we have thoroughly analyzed the Kalman 

filter efficiency in recovering three significant 

parameters of the VF ECG signal. 

3.1. SNR improvement 

The 17 CPR records have been tested combined with 

all the 200 VF records, for the original SNR values of -

10, -6, -3 and 0dB.  

Fig. 2 shows the SNR values obtained after applying 

the Kalman filter to each test signal. They are compared 

in the figure with each original value. It is observed that 

the SNR improvement is quite significant and depends 

strongly on the added CPR artifact. 

3.2. Sensitivity improvement 

The sensitivity improvement in the AED algorithm 

for the detection of shockable rhythms has been 

analyzed. For the same original SNR values, the AED 

sensitivity has been characterized after filtering.  

Table 1 presents the sensitivity evaluated with and 

without the Kalman filtering, again for each CPR 

artifact and for each original SNR. It is observed a high 

improvement applying the Kalman filtering technique. 

For all the CPR artifacts the sensitivity after filtering 

gets close to the original value of nearly 100%. 

3.3. Significant frequencies variations 

We have analyzed three significant frequencies for 

both the original 200 VF records and the recovered VF 

ones: 

1. The median frequency, fm: frequency below which 

the spectrum power is the 50%. 

2. The dominant frequency, fd: that corresponding to 

the maximum power spectrum. 

3. The edge frequency (fe): frequency below which 

the spectrum power is the 95%. 

These values have been re-calculated after filtering 

for the same original SNR values. It can be observed in 

Table 2 that with all the combinations, the average 

values obtained are in the range of those calculated for 

the original ones.  

4. Conclusions 

In this paper, we have described an adaptive Kalman 

filtering technique to suppress the CPR artifact from the 

VF signal in a human model. 

Our model is very simple, as it only needs four state 

variables to be defined. However, additional signal 

spectral information is needed to know it properly. 

The efficiency of this technique has been tested 

calculating SNR improvement, AED sensitivity 

improvement and variations of the VF signal 

characteristic frequencies. 

The achieved results are promising, so we think that 

some future works should be focused on increasing the 

number of test CPR artifact records and also on 

optimizing the adaptive filter model. 

 
Figure 2. SNR improvement evaluation 
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Table 1. Sensitivity evaluation in % 
SNR= -10dB SNR= -6dB SNR= -3dB SNR= 0dB  

No 

filter 
Filter 

No 

filter 
Filter 

No 

filter 
Filter 

No 

filter 
Filter 

CPR1 70.6806 98.4293 46.0733 100 31.9372 98.9529 37.6963 98.9529

CPR2 49.7382 94.2408 40.3141 98.4293 34.555 98.9529 33.5079 98.9529

CPR3 16.2304 92.1466 34.555 97.3822 36.1257 96.8586 52.8796 98.9529

CPR4 4.712 94.7644 16.7539 98.4293 39.267 99.4764 55.4974 99.4764

CPR5 8.377 96.8586 37.6963 97.3822 45.0262 99.4764 62.8272 97.3822

CPR6 7.8534 96.3351 24.0838 99.4764 42.4084 99.4764 60.2094 97.9058

CPR7 7.8534 99.4764 27.2251 97.9058 46.0733 97.3822 71.2042 97.3822

CPR8 80.6283 84.8168 85.8639 95.8115 81.1518 96.3351 69.1099 97.9058

CPR9 34.555 95.288 47.1204 99.4764 62.8272 98.9529 76.4398 98.9529

 

SNR= -10dB SNR= -6dB SNR= -3dB SNR= 0dB  

No 

filter 
Filter 

No 

filter 
Filter 

No 

filter 
Filter 

No 

filter 
Filter 

CPR10 38.2199 91.623 74.8691 94.7644 81.1518 97.3822 74.8691 96.8586

CPR11 18.8482 100 43.4555 100 53.4031 100 65.445 100

CPR12 12.0419 100 27.2251 98.9529 35.0785 98.9529 49.2147 98.4293

CPR13 0 97.9058 5.7592 99.4764 23.0366 99.4764 35.6021 98.9529

CPR14 65.445 98.4293 68.0628 98.4293 70.1571 99.4764 69.1099 100

CPR15 79.0576 97.3822 86.911 98.4293 80.1047 99.4764 64.3979 100

CPR16 46.0733 94.7644 51.3089 98.4293 71.2042 100 83.7696 100

CPR17 59.6859 91.0995 69.1099 93.7173 56.0209 97.3822 52.8796 97.9058

    

  
Table 2. Mean frequency values restored after filtering the VF+CPR signal with different SNR 

fm : 4.4470 ± 1.1003 Hz fd : 4.4152 ± 1.2364 Hz fe : 8.9229 ± 2.9374 Hz  
-10dB -6dB -3dB 0dB -10dB -6dB -3dB 0dB -10dB -6dB -3dB 0dB 

CPR1 4.354 4.4468 4.5079 4.5549 4.4304 4.4603 4.5236 4.5316 6.1796 6.1342 6.1169 6.1274

CPR2 4.3484 4.4703 4.5664 4.6205 4.438 4.4864 4.5708 4.6182 6.1256 6.0946 6.1159 6.1319

CPR3 4.3093 4.5205 4.5805 4.623 4.4958 4.5947 4.6094 4.6132 5.8884 6.017 6.0698 6.1

CPR4 4.4015 4.543 4.5896 4.6235 4.5205 4.5831 4.6066 4.6179 6.3174 6.2852 6.2149 6.1877

CPR5 4.4173 4.5191 4.5752 4.6231 4.4745 4.561 4.5743 4.631 6.1964 6.1459 6.1391 6.157

CPR6 4.3666 4.4801 4.5155 4.5633 4.4127 4.4921 4.5063 4.5315 6.1667 6.1321 6.0989 6.1155

CPR7 4.5962 4.6372 4.6474 4.6417 4.5066 4.5219 4.5461 4.5572 7.2737 6.9583 6.6741 6.3736

CPR8 4.2651 4.4839 4.5711 4.6111 4.1846 4.5185 4.5473 4.5906 7.3842 7.0445 6.7137 6.4793

CPR9 4.2481 4.4431 4.4917 4.53 4.3298 4.4858 4.5122 4.529 6.1484 6.1374 6.1133 6.1289

CPR10 4.7437 4.6962 4.6928 4.6744 4.6674 4.6457 4.6659 4.661 8.5221 8.0396 7.4926 6.9807

CPR11 4.0724 4.317 4.4314 4.5024 4.1085 4.3633 4.4407 4.4986 5.2425 5.4914 5.6765 5.8308

CPR12 4.5653 4.6273 4.6233 4.6171 4.6065 4.6252 4.6287 4.5992 6.53 6.4076 6.3541 6.2709

CPR13 4.2695 4.4754 4.5804 4.6077 4.2215 4.4413 4.5623 4.5769 6.016 6.0517 6.1214 6.1068

CPR14 4.4282 4.5426 4.5874 4.6346 4.5327 4.609 4.6162 4.6388 6.8042 6.5406 6.3817 6.3018

CPR15 4.4927 4.5366 4.5692 4.6219 4.547 4.5506 4.572 4.6117 6.5884 6.2562 6.2122 6.2003

CPR16 4.1676 4.4443 4.5514 4.6098 4.2201 4.462 4.5457 4.5987 6.3137 6.2644 6.2247 6.2276

CPR17 4.596 4.6353 4.6735 4.6967 4.6923 4.6848 4.7051 4.7198 6.5766 6.3871 6.3224 6.2365
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