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Abstract

In this paper, we present an effective algorithm for

detecting the onset of arterial blood pressure (ABP)

pulses. The algorithm employs a windowed and weighted

slope sum function (SSF) to extract ABP waveform

features. Adaptive thresholding and search strategies are

applied to the SSF signal to detect ABP pulses and to

determine their onsets. Two evaluation procedures were

employed. First, pulse detection accuracy was evaluated by

comparing the algorithm’s pulse detections with reference

ECG annotations using the MIT-BIH Polysomnographic

Database. The algorithm detected 99.31% of the 368,364

beats annotated in the ECG. Second, the accuracy of

pulse onset determination was established using a newly

created, manually-edited reference ABP signal database.

For 96.41% of the 39,848 beats in the reference database,

the difference between the manually-edited and algorithm-

determined ABP pulse onset was less than or equal to

20 ms. The C source code of the algorithm has been

contributed to PhysioToolkit and is freely available from the

PhysioNet website (http://www.physionet.org).

1. Introduction

The ABP waveform contains rich information about the

cardiovascular system, such as heart rate, systolic, mean,

and diastolic arterial pressures, and it can be used to assess

properties of the arterial vessel wall [1, 2]. Reliable and

accurate ABP pulse detection is crucial for beat-by-beat

extraction and analysis of the information mentioned above.

This task is rendered difficult, however, since the ABP

measurement is prone to noise and artifacts (see Figure

1 (b) and (d)). Furthermore, the waveform morphology

can change dramatically, even over short periods of time,

in response to altered pathologic or physiologic stresses

(Figure 1 (a) and (c)).

Although it is the ABP pulse onset that denotes the

arrival of the arterial pressure pulse at the recording site,

most ABP pulse and pulse-component detection algorithms

identify the peak of the ABP waveform as the fiducial

(a)
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(c)
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Figure 1. Examples of ABP waveform signals. (a) and (b)

are non-invasive (FINAPRES) recordings; (c) and (d) are

invasive ABP recordings from the radial artery; 10 seconds

per trace.

mark of the ABP pulse [3, 4, 5]. The strategy of peak

detection rather than pulse onset detection is inappropriate

for studying pulse wave velocity [6] and ECG-ABP delay

time [7] characteristics, as the duration of the upslope

depends, among other things, on ventricular and valvular

properties.

This study presents an algorithm that determines the

onset of arterial pressure pulses by first converting

the ABP waveform into a slope sum function (SSF)

signal. Subsequent adaptive thresholding and local search

strategies allow for ABP onset annotations to be placed

in close proximity of the actual pulse onset. We used

two different databases for performance evaluation. Our

results show that this algorithm is effective in detecting and

annotating ABP onsets.
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2. Methods

2.1. The algorithm

As shown in Figure 2, the algorithm consists of three

components: a low-pass filter, a windowed and weighted

slope sum function, and a decision rule. The ABP signal,

filter

Low−pass Decision

ABP function rule

Slope sumxn yn z n
1t  , t  , ...2

Figure 2. Algorithm flow diagram.

xn, is the input of the low-pass filter, and yn is the filtered

ABP. The slope sum function converts yn to a slope sum

signal zn. A decision rule is applied to zn to determine the

ABP pulse onsets denoted by t1, t2, ....

Low-pass filter: The purpose of the low pass filter is to

suppress high frequency noise that might affect the ABP

onset detection. We use a second order recursive filter [8]

whose transfer function, frequency response, and difference

equation are given below for a sampling frequency of 250

Hz (i.e., a sampling interval T = 4 ms).

H(z) =
(1� z�5)2
(1� z�1)2 ; jH(!T )j =

sin2(3!T )

sin2(!T=2)

yn = 2yn�1 � yn�2 + xn � 2xn�5 + xn�10
The 3 dB cut-off frequency is about 16 Hz and the gain is

25 at 0 Hz. The phase shift is 20 ms (5 samples at 250 Hz).

Slope sum function: The purpose of the slope sum

function is to enhance the upslope of the ABP pulse and

to suppress the remainder of the pressure waveform. The

windowed and weighted slope sum function at time i, z i , is

defined as follows:

zi =

iX
k=i�w�uk; �uk =

�
�yk : �yk > 0
0 : �yk � 0

where w is the length of the analyzing window; 1 + w �
i � N , N is the total number of ABP samples in the record;

�yk = yk � yk�1, and yk is the low-pass filtered ABP

signal as defined above. To maximize the SSF, w is chosen

approximately equal to the typical duration of the upslope

of the ABP pulse. In the present algorithm, w = 128 ms

or 32 samples for the sampling frequency of 250 Hz. The

relationship between the ABP and the SSF signals is shown

in Figure 3.

The onset of the SSF pulse generally coincides with the

onset of the ABP pulse as the SSF signal can only rise when

the ABP signal (or noise not removed by filtering) rises.

SSF

ABP

Figure 3. Relationship between ABP and SSF signals.

Since the SSF signal is a simpler signal to process, the pulse

onset will be detected by processing the SSF signal.

Decision rule: Finally, we have to establish a decision rule

that allows for detection of each SSF pulse onset. We split

this task into two: First, we apply adaptive thresholding

to the SSF signal to detect SSF pulses of appropriate

amplitude. Next, we employ a local search strategy around

the detection point to confirm the detection and to identify

the likely onset of the pulse. During the thresholding step,

a threshold base value is established and is initialized at

three times the mean SSF signal (averaged over the first

ten seconds of the recording). The threshold base value

is adaptively updated by the maximum SSF value for each

SSF pulse detected. The actual threshold is taken to be 60%

of the threshold base value. When the SSF signal crosses

this threshold, the algorithm searches for the minimum and

the maximum SSF values in a 150 ms-window preceding

and succeeding the threshold-crossing point, respectively.

The pulse detection is accepted only if the difference

between the maximum and minimum exceeds a certain

value; otherwise the pulse detection is rejected. When

the pulse is accepted, the algorithm searches backward in

time from the threshold-crossing point for the onset of the

SSF pulse. The onset point is determined when the SSF

signal exceeds 1.0% of the maximum SSF value. The

calculated ABP onset is adjusted by 20 ms, or 5 samples,

to compensate for the low-pass filter’s phase shift. Finally,

to avoid double detection of the same pulse, a 300ms eye-

closing (refractory) period is applied, during which no new

pulse detection is initiated. Figure 4 illustrates the ABP

onset annotations.

2.2. Evaluation procedure

To evaluate the performance of the algorithm, we first

assessed the accuracy of pulse detection and subsequently

evaluated the accuracy of pulse onset detection.

Pulse detection: The pulse detection accuracy of the

algorithm was evaluated using the MIT-BIH Polysomno-
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ABP

Filtered ABP

SSF

Figure 4. Example of ABP pulse onset detection process.

Top trace: raw ABP signal; middle trace: filtered ABP

signal; bottom trace: SSF signal; vertical dashed lines: ABP

onset annotations.

graphic Database [9, 10], which consists of 18 recordings

of variable length, each of which contains, among other

physiologic signals, an invasively recorded ABP signal.

Given a relatively constant delay between the QRS complex

and peripherally recorded ABP signals of about 200 ms,

we compared the ABP pulse detections with the reference

ECG-based beat annotations by shifting forward the ECG

annotations by 200 ms and applying a standard beat

annotation comparison, bxb [11], freely available from

PhysioNet. A total of 368,364 ECG-based beat annotations

are available for comparison.

Pulse onset detection: To assess the accuracy of the

pulse onset detection, a reference database was established,

which includes ten one-hour recordings of ECG and a

non-invasively measured ABP signal (FINAPRES). The

details of the database are described elsewhere in these

proceedings [12]. In a first step, we used the algorithm

above to annotate the ABP pulses. In the second step,

a human expert annotator carefully inspected each ABP

onset detection and, where deemed necessary, manually

edited the annotation placement. A comparison between

the location of the manually-edited and algorithm-based

annotations was then performed using bxb, which allows

for specification of a match window, i.e., a maximum

absolute difference in annotation times permitted for

matching annotations. Only if two annotation times deviate

by less than the user-specified matching window, is a

correct annotation declared. A total of 39,848 ABP

annotations are available in the reference database for

comparison. This number includes 560 annotated blood

pressure calibration pulses.

3. Results

A high level of concurrence was observed for

the evaluation of pulse detection using the MIT-BIH

Polysomnographic Database: 99.31% of the 368,364 beats

annotated in the ECG were detected by the algorithm, and

99.74 % of the events detected by the algorithm had been

annotated as beats in the ECG. Many of the discrepancies

occur as a result of ECG or ABP signal loss. Table 1 shows

the summary statistics for the pulse detection evaluation.

Table 1. Sensitivity and PPA of pulse detection I

Sen (%) PPA (%)

Gross 99.31 99.74

Average 99.26 99.77

PPA: positive predictive accuracy.

Similar results were obtained when evaluating the

performance of pulse detection on the reference database

described above: 99.71 % of the 39,848 reference ABP

annotations were detected by the algorithm, and 99.69 % of

the events detected by the algorithm were in fact annotated

ABP pulses. Table 2 reports the summary statistics for pulse

detection using the newly established reference database.

Table 2. Sensitivity and PPA of pulse detection II

Sen (%) PPA (%)

Gross 99.71 99.69

Average 99.71 99.72

We also used the reference database described above to

assess the accuracy of the ABP pulse onset determination.

Figures 5 and 6 show the histogram and cumulative

distribution of matching annotations as a function of�t, the

time difference between the manually and algorithmically

determined ABP pulse onsets. As can be seen, most

annotations fall within 8 ms of the reference annotations,

with outliers tapering off gradually.
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Figure 5. Histogram of matching annotations as a function

of�t.
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Figure 6. Cumulative distribution of matching annotations

as a function of�t.

For 96.41% of the 39,848 beats in the reference database,

the difference between the manually-edited and algorithm-

determined ABP pulse onset was less than or equal to 20

ms.

4. Discussion

Accurate detection of arterial blood pressure pulse onsets

enables one to extract physiologic information from arterial

pressure waveforms on a beat-by-beat basis.

Our approach to ABP pulse onset detection is based on

the transformation of a low-pass filtered ABP signal into

a slope sum function signal, in which the initial upslope of

the blood pressure waveform is enhanced and the remainder

is suppressed. The transformation leaves the location of the

pulse onset unaltered, except for the fixed filter delay, and

detection of the pulse onset based on the slope sum function

signal is straight forward.

Our evaluation results indicate that the vast majority of

algorithm-based blood pressure pulse onset annotations are

placed within a few samples’ distance from annotations

placed by an expert annotator.

Finally, we have included the algorithm in the open-

source WFDB software package, which is freely available

from PhysioNet (http://www.physionet.org/)
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