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Abstract 

Dofetilide selectively inhibits the rapid component of 

the delayed potassium current (IKr). In this work, a 

mathematical model of dofetilide effects on IKr has been 

developed. This model has been incorporated to the Luo 

and Rudy (II) model of guinea pig ventricular action 

potential and the effect of different dofetilide 

concentrations on the action potential characteristics has 

been studied. Our results show that the steady-state block 

of IKr is dose-dependent with a block of 10%, 53% and 

92% for 1 nM, 10 nM and 100 nM of dofetilide 

respectively (IC50= 8.7 nM). This increment of IKr block 

when the concentration increases induces a prolongation 

of APD also in a dose-dependent way. We observed 

prolongations of APD90 of 13% and 28% for 10 nM and 

100 nM of dofetilide respectively. In agreement with 

experimental results, the interaction between dofetilide 

and the receptor in the channel presents slow kinetics 

and reverse use-dependence in our model.  

 

 

1. Introduction 

The antiarrhythmic efficacy of drugs that induce 

prolongation of action potential duration (APD), through 

the blockade of the delayed rectifier current, IK, has been 

widely probed in reentrant arrhythmias. In different 

species, as guinea pig, IK consist on two components: a 

slowly activating component, IKs, and a rapidly activating 

component, IKr, sensitive to E-4031 or sotalol [1]. 

Dofetilide is an antiarrhythmic drug that specifically 

blocks the rapid component of the delayed rectifier 

potassium current IKr  [2-4]. In 1999, the U.S. Food and 

Drug Administration (FDA) approved dofetilide for  the 

treatment of persistent atrial fibrillation and flutter. 

Dofetilide is classified as a pure class III antiarrhythmic 

agent because it produces only prolongation of action 

potential duration (APD), without any effect on the 

resting membrane potential, action potential amplitude or 

maximum rate of depolarization [4]. The effect of 

dofetilide on APD has been recorded in different 

myocardial tissues and species [5,6]. In all the myocardial 

tissues, blockade of IKr by dofetilide induces a higher 

prolongation of APD, and hence, of the QT interval, as 

the concentration of dofetilide increases. Prolongation of 

APD is related with the increment of refractory period in 

cardiac tissue. 

While the efficacy of dofetilide as antiarrhythmic drug 

is related to the increment in refractoriness, the 

prolongation of QT may trigger the polymorphic 

ventricular tachycardia called torsade de pointes [7]. 

Different studies have found antiarrhythmic action of 

dofetilide in preventing and in terminating ventricular 

tachycardias [8] and in the prevention of atrioventriclar 

re-entrant tachycardia [9].  It has been also suggested that 

dofetilide may be useful in reducing the frequency of 

multiple episodes of monomorphic ventricular 

tachycardia and in increasing the efficacy of 

antitachycardia pacing in patients with implantable 

cardioverter-desfibrillator [10].  

Dofetilide is a potent blocker of IKr. An IC50 in the 

nanomolar range has been experimentally measured in 

guinea pig ventricular myocytes, namely 8.7 nM [11] and 

31 nM [4]; 3.9 nM in rabbit ventricular myocytes, [3]; 11 

nM in mouse AT-1 cells [12] and 12 nM in HERG 

expressed in human cells [13]. These results are 

consistent with radioligand ([
3
H] dofetilide) binding 

affinity studies that show high-affinity sites associated 

with IKr with IC50 values of 28 nM [14] and 31 nM [15]. 

Experimental evidences suggest that the interaction 

between the drug and the receptor in the channel is 

produced in the open state (open channel block) rather 

than in the closed state [3, 13, 16]. Once the block has 

been produced, the effect persists during a long period at 

rest, suggesting that the drug does not dissociate when the 

channel is closed; the drug seems to be trapped within the 

channel [3, 16]. It has been recently suggested that 

dofetilide interacts with the channels in both the open and 

the inactivated states [17]. The interaction between 

dofetilide and receptor presents a very slow kinetics 

[11,13] and exhibits reverse use-dependence [2,16]. The 

increment in the dofetilide dose enhances the reverse-use 

dependence [2].  

The main objective of the present work is to develop a 

mathematical model of the IKr block by dofetilide and to 

study the effect of different concentrations on the action 

potential characteristics. 
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2. Methods 

In this work, the mathematical model of the cardiac 

action potential developed by Luo and Rudy (phase II) 

was used in order to simulate the guinea pig ventricular 

action potential.  In 1995, they improved the model by 

replacing the IK by its two components IKs and IKr [18]. 

The formulation of the IKr current is based on the 

experimental data obtained by Sanguinetti and Jurkiewicz 

[1]. They proposed IKr channels with three possible states: 

Closed (C), Open (O) and Inactivated (I). 

 

 

The formulation of IKr in de model [18] is expressed as 

)(max KrrKrKr EVRXGI −=  

where V is the membrane potential, EKr is the reversal 

potential, GKrmax is the maximum conductance of IKr, Xr is 

the activation gate and R is the time-independent 

inactivation gate. For a detailed description of the current 

see reference [18]. 

The blocking activity of dofetilide was simulated using 

the “guarded receptor hypothesis” [19], and its effect on 

the current was represented by introducing the factor 

(1−b) in the IKr formulation (where b is the fraction of 

channels blocked by the drug). This model of drug action 

assumes a drug binding to a constant affinity channel 

receptor guarded by the gating mechanism of the channel, 

unaltered by the drug. Thus, the new formulation of IKr 

taking into account the effect of dofetilide is 

( ) )(1 max KrrKrKrb EVRXGbI −−=  

Both the IKr model and the cellular model (incluing the 

new IKrb formulation) was written in ACSL language, 

using Gear stiff algorithm to solve the nonlinear system 

of differential equations. 

3. Results and discussion 

In accordance with experimental studies that have 

shown drug-receptor interaction in open and in 

inactivated states, but not in closed states, and that the 

drug is trapped when the channel closes. We suggest the 

following model of blocking IKr by dofetilide  

 

 

 

 

 

 

where (*) indicates the drug-channel binding states,  ko 

and ki are the association rate constants, and ro and ri  are 

the dissociation rate constants (with open and inactivated 

states respectively). We consider that the forward 

coefficients are equal for the open and inactivated states 

and that the reverse coefficients are also equal. Then,  

kkk io ==   and   rrr io ==  

 

From this model, the blocking factor b can be 

calculated as 

( ){ } [ ]( ){ }rbbDkRRX
dt

db
r −−−+= 11  

We used the dissociation constant r=0.0036s
-1

, 

obtained by Duff et al [14], using radioligand ([
3
H] 

dofetilide) binding affinity studies, for the high-affinity 

sites identified in guinea pigs ventricular myocytes. From 

the value IC50 of 8.7 nM recorded by Weerapura et al 

[11], we estimated the association rate constant k, 

(IC50=r/k), as k=0.4137 µM
-1

s
-1

. 

These values are similar to those obtained in different 

experimental conditions as: k= 0.6 µM
-1

s
-1

 [13] and  k= 

0.1 µM
-1

s
-1

 and  r=0.003s
-1

 [15] 

In order to test the dofetilide-channel binding model, 

we applied voltage-clamp protocols of stimulation to the 

IKrb model.   

In Figure 1, the evolution of the normalized current 

(IKrb/IKr) when a voltage clamp protocol (from -40 mV to 

0 mV) was applied to the IKrb model for a dofetilide 

concentration of 50 nM is shown. The symbols represent 

the experimental results obtained by Weerapura et al [11] 

and the solid line shows the results of the IKrb model. The 

model indicates that the IKrb decays with a time constant 

of 41 s very close to that recorded experimentally (36.6 s)  
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Figure 1. Voltage clamp protocol (indicated in the figure) 

was used to compare the experimental results obtained 

when dofetilide 50 nM is applied to ventricular guinea 

pig cells. Symbols correspond to experimental results, the 

line is the evolution indicated by the IKrb model 
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In Figure 2, the same voltage clamp protocol was 

applied, this time from -80 mV to +10 mV, for different 

concentrations of dofetilide ([D]), in the range from 1nM 

to 1µM. It is possible to observe that the block is faster 

when the dofetilide concentration increases. For this 

voltage-clamp protocol, the time constant for a [D]= 300 

nM resulted from the model is 7.5 s (plot not shown), 

closed to recorded experimentally (5.2 s) by Snyders et al 

[15].  
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Figure 2. Time course of blocking (from the IKrb model) 

for different concentrations of dofetilide, when a voltage 

clamp protocol (indicated in the figure 1, but from -80mV 

to +10 mV) is used. 

 

In Figure 3, the steady-state blockage effect of 

different concentrations of dofetilide on the IKr (a) and on 

the action potential (b) are shown. For all the simulations, 

the cellular model was stimulated, until the steady-state 

was reached, with a rectangular current pulse with an 

amplitude 1.5 times the diastolic threshold and a duration 

of 2 ms. Only the magnitudes associated to the last 

stimulation pulse are shown. From the figure, it is 

observed that as the concentration of dofetilide is 

increased from 1nM to 1 µM, the maximum value (peak) 

of IKr decreased from APD90 10% to 99%, and, as a 

consequence of the IKr block, the APD90 increases from 

2% to 29%. The theoretical values obtained using the 

model are in agreement with the experimentally recorded 

ones. Yang et al [20] obtained an increment of 26% of 

APD90, when guinea pig papillary muscles were treated 

with dofetilide (100 nM). Similar values have been 

obtained experimentally in other species. Baskin et al [5] 

recorded an increment of isolated ferret ventricular ERP 

of approximately 10-20 % for different values of 

dofetilide concentration (10 nM-10 µM). Recently, Hua 

et al [6] observed that dofetilide (10 nM) increased 

APD90 at 1Hz by 24%, in isolated guinea pig Purkinje 

fibers. The higher blocking effect observed in Purkinje 

fibers is due to the fact that dofetilide is more potent in 

Purkinje fiber than in ventricular muscle. 
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Figure 3. Effect of dofetilide concentration on IKr (a) and 

on the action potential (b) obtained with the model. 

 

The model proposed reproduces the reverse use-

dependence effect of dofetilide. Due to this effect, the 

prolongation of action potential duration increases when 

the stimulation frequency is reduced. In Figure 4 it is 

possible to observe the increment in APD90 induced by 

different concentrations of dofetilide at different pacing 

cycle length. 
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Figure 4. Increment in APD90 induced by different 

dofetilide concentrations at different basic cycle length 

(BCL). 
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From the results shown in the figure, it is possible to 

observe that the dofetilide presents reverse use-

dependence in all range of concentration tested (1 nM to 

1 µM). Even more, when the concentration of dofetilide 

increases, the reserve use-dependent is enhanced. 

However, for BCL higher than 1000 ms the increment of 

APD90 does not change significantly with the BCL. This 

behaviour is very similar to the observed experimentally 

[2], see Figure 3 in reference [16].  

4. Conclusions 

A model of the dofetilide-IKr binding has been 

presented. The model is based on experimental results 

and takes into account the recent experimental evidence 

that suggest an interaction between dofetilide and the 

membrane receptor when the channels are in both, open 

and inactivated state, and that indicate that the drug is 

trapped when the channel is in closed state. The block 

kinetics and the increment of APD90 for different 

concentrations of dofetilide are in good agreement with  

experimental results. The model also reproduces the 

reverse use dependence behaviour observed in this drug.    
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