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Abstract

A method for robustly estimating the respiratory

frequency from exercise ECGs is presented. The special

characteristics of these recordings, such as the highly non-

stationary noise, the exercise-induced QRS morphologic

variations, and the dynamic nature of the respiratory

frequency during the exercise test, make the classical

estimation of a respiratory signal to break down. Our

method is based on least-squares estimation of the

rotation angles of the heart electrical axis by aligning

successive QRS-VCG loops to an adaptively updated

reference loop. The respiratory frequency is estimated

by spectral analysis of the series of rotation angles using

a reference frequency tracking algorithm. The method

was evaluated by means of a simulation study. The

respiratory frequency estimation error achieved by this

method (0.623%±0.316%, mean±SD) was found to be

lower than that obtained by a classical method based on

QRS areas (3.220%±3.873%).

1. Introduction

The respiratory signal is usually recorded by means of

techniques like spirometry or plethysmography. Sometimes

the recording of the respiratory signal is impractical

and uncomfortable for the patient, e.g. during exercise

testing, since the patient is constantly moving and with an

increasing oxygen demand rate. In these situations, the use

of methods for indirectly extracting respiratory information,

such as the respiratory frequency, are challenging.

Respiration activity influences electrocardiographic

measurements. During the respiratory cycle, chest and

heart movements cause a change of the electrical axis of

the heart which affects QRS morphology. Several studies

have developed signal processing techniques to derive the

respiratory signal from the ECG, called the ECG-derived

respiration (EDR) signal. Unfortunately, exercise ECGs

are highly non-stationary and noisy, causing classical EDR

methods to fail. Moreover, the respiratory frequency during

an exercise test is in itself a highly dynamic quantity.

A method for estimating the respiratory frequency from

the VCG was described in [1]. The method is based

on least-squares estimation of the rotation angles of the

heart electrical axis during the respiratory cycle by aligning

successive QRS-VCG loops to a reference loop with respect

to the transformations of rotation and time synchronization.

The respiratory frequency was estimated by power spectral

analysis of the estimated rotation angle series.

The aim of our work was to obtain a robust estimation

of the respiratory frequency from exercise ECGs. The

method in [1] was modified to better account for the

special characteristics of exercise ECGs, including an

adaptive reference loop to compensate for exercise-induced

QRS morphologic changes and the rejection of inaccurate

rotation angles due to noise and ectopic beats. For

comparison, a classical EDR method based on QRS areas

was also implemented [2].

2. Materials and methods

2.1. Database

At the University Hospital ‘Lozano Blesa’ of Zaragoza,

Spain, the ECGs of 844 patients and 66 asymptomatic

volunteers were recorded during a treadmill exercise test.

Standard leads (V1, V3-V6, I, II, III, aVR, aVL and aVF)

and RV4 were digitized at a sampling rate of 1 kHz and a

resolution of 0.6 µV .

2.2. Respiratory frequency estimation

The method for estimating respiratory frequency is

divided into three stages: first, a signal preprocessing

is needed to ensure the proper performance of the EDR

algorithms implemented in the second stage; finally, the

respiratory frequency is estimated by spectral analysis of

the EDR signals.

2.2.1 Signal preprocessing

QRS complexes are detected by the method proposed

in [3], using RV4, V4 and V5. A VCG signal is

synthesized from the 12-lead recorded signal using the

same methodology as the one producing the inverse Dower
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transformation [4], but here accounting for the spatial

location of RV4 rather than the standard V2 [5].

Exercise ECGs usually present large baseline drift,

implying different reference voltages of successive QRS

complexes. Baseline drift is attenuated using cubic splines

interpolation.

2.2.2 EDR algorithmsQRS�VCGloop alignment
The EDR signal is given by the series of least-squares

estimated rotation angles of the cardiac electrical axis

between an observed and an adaptively updated reference

loop. The method consists of the minimization of the

normalized distance ε between a reference loop (3×N
matrixYR) and an observed loop (3×(N+2∆) matrixY),

with respect to the transformations of rotation (3×3 matrix

Q) and time synchronization ((N+2∆)×N matrix Jτ ) [6]:

ε =
‖YR −Q

TYJτ‖
2
F

‖QTYJτ‖2F
(1)

Q =





∗ sinφz cosφy sinφy
∗ ∗ sinφx cosφy
∗ ∗ ∗



 (2)

Jτ =





0∆+τ
I

0∆−τ



 (3)

where N is the number of samples of the QRS complex

analysis window (80 ms). The parameter ∆ denotes the

number of symmetrically augmented samples to allow time

synchronization (10 ms) with τ = −∆, . . . ,∆ incremented

in steps of 1 ms.

Vectorcardiographic loop alignment is performed over

the early part of the QRS complex (from 60 ms before to

20 ms after the QRS fiducial point) since the terminal part

of the QRS is affected by exercise-induced ST changes.

The rotation angles φx, φy and φz are computed from

the estimated rotation matrix Q̂. For successive beats with

similar morphologies Q is diagonally dominant. However,

at high noise levels or in the presence of ectopic beats

Q̂ does not always have that structure, leading to outlier

angle estimates. In [6] it was proposed to estimate Q̂τ for

different values of τ , to discard non-diagonally dominant

matrices and to choose that Q̂τ of the remaining matrices

which minimizes the criterion. When no diagonally

dominant matrix Q̂τ is found for any τ (−∆ ≤ τ ≤ ∆)

no rotation angles are estimated for that loop, leading to

angle trends with large gaps in noisy periods.

The QRS morphology may change during exercise.

An exponentially updated reference loop is considered to

reduce the influence of exercise-induced QRS morphologic

variations on angle estimations.

YR(k + 1) = αYR(k) + (1− α)Y(k + 1) (4)

The parameter α should be carefully chosen to

follow exercise-induced QRS morphologic variations while

avoiding adaptation to noise; a value of 0.8 was used in

this study based on experimentation on actual recordings.

Loops for which no diagonally dominant Q̂τ is found do

not participate in the adaptation of YR. Fig. 1 displays

YR at the beginning, at exercise peak, and at the end of an

exercise ECG.
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Figure 1. Reference loop (mV against ms) at the beginning

(solid), at exercise peak (dashed) and at the end (dotted) of

an exercise ECG.

QRS areas
For comparison, the EDR method described in [2] was

implemented. The ratio of the QRS areas over a fixed

time interval of two orthogonal leads is used to define

an angle θ resembling the instantaneous direction of the

cardiac electrical axis in relation to one of the leads:

θxy = arctan(Ay/Ax)

θxz = arctan(Az/Ax)

θyz = arctan(Az/Ay)

whereAx,y,z represents the QRS area over the same interval

defined for QRS-VCG loop alignment, computed by the

trapezoidal method in leads X, Y and Z, respectively. The

variations of the estimated θ̂xy , θ̂xz and θ̂yz trends are used

as EDR signals.

2.2.3 Spectral analysis

The respiratory frequency is estimated as the peak

frequency of the EDR signal. Spectral analysis is performed

by means of Lomb’s method [7] since the angle trends are

unequally spaced and present large gaps in noisy periods.

Simple interpolation would introduce low frequencies in the

spectrum which would mask the respiratory frequency.

The respiratory frequency is estimated on the moving-

average of 6 spectra, each of which estimated on a 20-

beat period sliding 5 beats each time. Spectral averaging

is necessary to smooth frequency peaks due to inaccurate

angle estimates and to enhance the peak of the respiratory

frequency. The time period length in which spectral

estimation is carried out should be chosen to allow the

estimation of the lowest reasonable respiratory frequency

(0.2 Hz) and to follow respiratory frequency variations

during exercise. The normalized spectra of the three

estimated angle trends are summed, prior to the spectral
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averaging, to account for electrical axis rotation projections

on any lead.

To reduce the risk of spurious peak selection, the search

of the largest spectral peak (f̂(k)) is restricted to the interval

[0.7fR(k),1.3fR(k)] around a reference frequency (fR(k)),
aimed to be the smoothed running respiratory frequency,

exponentially updated.

fR(k + 1) = βfR(k) + (1− β)f̂(k + 1) (5)

where k denotes the index of each averaged spectrum.

The parameter β was set to 0.9 in a compromise between

obtaining a stable estimation of the respiratory frequency

and following its variations during an exercise test.

2.3. Simulation study

The database described in Section 2.1 does not contain

simultaneously recorded respiratory signals. Therefore, a

simulation study is designed to evaluate the method. First,

a noise free exercise ECG is simulated from a set of 15

weighted averaged beats extracted from resting, exercise

and recovery phases of a real exercise ECG from the

database, following different ST/HR patterns [8].

The simulated records have a standard 12-lead

configuration like those in Section 2.1. A VCG signal is

synthesized as explained in Section 2.2.

The changes in the electrical axis of the heart due to

respiration are simulated as described in [9]. The VCG

is transformed by a rotation matrix of time-varying angles.

The angular variation around each lead is simulated by two

sigmoidal functions reflecting inhalation and exhalation,

with a maximum variation of 5 degrees. The simulated

respiratory frequency follows a pattern which often occurs

during exercise (Fig. 2).
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Figure 2. Simulated respiratory frequency pattern

In order to take the presence of noise in exercise ECGs

into account, an additive noise model is used. Noise records

are estimated as the residual of raw exercise ECGs and

the corresponding averaged beat series. Spike-like QRS

residuals are rejected based on a median absolute deviation

(MAD) method as in [8].

In Fig. 3 a simulated record is shown during different

stages of an exercise test.
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Figure 3. Simulated record at the beginning (top), exercise

peak (middle), and end (bottom) of the exercise test.

3. Results

The method was evaluated on a total of 136 simulated

exercise VCGs resulting from the combination of 102

noise records (mean RMS level of 444 µV with standard

deviation (SD) of 267 µV ) and 4 different ST/HR patterns.

An absolute error trend was defined as∆f(k) = |f(k)−

f̂(k)| where f(k) is the simulated respiratory frequency

(Fig. 2) and f̂(k) the frequency estimated on each averaged

spectrum k. The relative error trend was defined as

∆f%(k) =
|f(k)−f̂(k)|
f(k) × 100(%). The intra-subject error

was characterized by the mean of ∆f(k) and ∆f%(k) .

Mean and SD of the intra-subject error achieved by the

two EDR algorithms (QRS-VCG loop alignment, eL, and

QRS areas, eA) are shown in Table 1 for the total number

of simulated recordings.

Table 1. Mean and SD of the intra-subject error

mean SD

eL (Hz) 0.0032 0.0019

% 0.623 0.316

eA(Hz) 0.0171 0.0218

% 3.220 3.873

The mean and SD of the respiratory frequency estimated

by both EDR algorithms during the whole exercise test can

be observed in Fig. 4.

4. Discussion and conclusions

The idea of using the QRS-VCG loop alignment

approach for estimating the respiratory frequency from the

ECG was proposed in [1] and applied to a database of young

non-pathologic subjects. This work extends the method in
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Figure 4. Mean (dashed) and SD (dotted) of the exercise

test respiratory frequency estimated by the QRS-VCG

loop alignment (left) and the QRS areas (right) approach

compared with the simulated respiratory frequency (solid).

[1] handling exercise ECGs, where respiratory frequency

is not constant but varying with work load, the signal is

often contaminated with high levels of noise, artifacts and

the presence of ectopic beats. The main modifications were

rejection of non-diagonally dominant rotation matrices,

an adaptively updated reference loop and tracking of the

respiratory frequency.

The simulation study was designed to mimic exercise

ECGs. Different ST/HR patterns typical for ischemic and

healthy subjects were simulated. Performance was similar

among the different patterns for both the QRS-VCG loop

alignment and the QRS area approaches, so all simulated

recordings were treated together to quantify the results.

The performances of the methods based on QRS-VCG

loop alignment and QRS area were compared by means

of the intra-subject error of the respiratory frequency

estimation. Signal preprocessing and spectral analysis of

the estimated rotation angle trends were identical for both

approaches. QRS-VCG loop alignment approach yielded

a lower error than the QRS area method (0.623%±0.316

vs. 3.220%±3.873%). As can be appreciated from Fig.

4, the QRS-VCG loop alignment outperforms the QRS

areas especially at the exercise peak, where noise levels

are at their peak. Comparison of the QRS-VCG loop

alignment and the QRS area approaches may not be fair

since the QRS area method is based on a simple calculation

of measures extracted from two leads, therefore requiring

less information and computation than the QRS-VCG loop

alignment approach.

Sometimes the beginning of the recording is particularly

noisy. In such situations the method failed to estimate

the respiratory frequency at the beginning of the test and

the error propagated to the end of the recording due to

the frequency tracking algorithm. This was particularly

problematic with the QRS area approach since its noise

break down level was lower than for the QRS-VCG loop

alignment. However, this phenomenon was also observed

with the QRS-VCG loop alignment approach in actual

exercise ECGs. It constitutes a major limitation of the

method proposed in this work and may be alleviated with

a robust initialization of the frequency tracking algorithm.

The method proposed here would be very useful to study

the correlation between respiratory frequency and heart rate

variability during an exercise test, which has been reported

to be a potential marker of ischemia.
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