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Abstract 

This study addresses the problem of sleep apnea 

recognition on a minute-by-minute basis from single-lead 

ECGs recorded overnight. Analysis of heart rate fluctua-

tions, quantified by the series of RR-intervals, is compa-

red to analysis of ECG morphology variations, assessed 

using signal vectors from the QRS- and the T-wave 

region and projecting them onto their first principal com-

ponent. The resulting series of scalar Karhunen–Loève 

coefficients (KLCs) were used as descriptors of morpho-

logy. From the derived series, we calculated a measure of 

similarity and a spectral index in temporal segments of 5 

min, and assessed their diagnostic accuracy by ROC-

analysis. Although the performance for the RR-series and 

the similarity feature was 81% / 84% sens ./ spec., better 

results up to 87% / 87% were obtained from the T-wave 

KLCs. It is concluded that the effects of sleep apnea on 

the ECG are reflected more uniformly in morphology 

variations of the ECG compared to heart rhythm. 

 

1. Introduction 

The prevalence of the obstructive sleep apnea 

syndrome (OSAS) is estimated to be 4% in middle-aged 

men and 2% in women [1]. Patients are exposed to an 

increased risk of mortality, mainly due to cardiovascular 

events. The survival rate significantly decreases with 

higher degree of severity of OSAS. Beside detailed 

analysis of medical history, the gold standard in diagnosis 

of OSAS is polysomnography, a costly procedure 

comprising multi-channel recordings of respiratory flow, 

noise, and movements as well as saturation of peripheral 

oxygen, heart rate, EEG, EOG, and EMG, which is only 

practicable in specially equipped sleeping laboratories. 

Due to the high prevalence of OSAS, paired with 

increased incidence of cardiovascular complications, 

simpler and less costly methods for diagnosis and 

estimation of severity are highly desirable and intensively 

searched for. Under the condition of a reliable recog-

nition rate, its practicability and little cost suggest 

analysis of the ECG as a favourable tool for this purpose. 

Guilleminault et al. [2] have described a characteristic 

pattern of heart rate change - cyclic variation of heart rate 

(CVHR) – mediated by the autonomous nervous system 

(ANS) during ongoing phases of apnea. Moody et al. [3] 

suggest a method to assess respiratory activity from 

amplitude variations of the ECG, and use this information 

for apnea detection.  

Recently, within the scope of the CinC Challenge 

2000, quantification of both phenomena has been applied 

successfully to the identification of time (minutes) spent 

in phases of apnea. Best results were generally obtained 

from spectral measures of heart rate variability and ECG 

amplitude variations [4], however a comparison of the 

relative merits appears difficult since the participating 

groups have used mixed approaches, different strategies 

for normalization and classification, and the dimension of 

the feature space often was rather high. 

In this study, we also address the problem of sleep 

apnea recognition from single-lead ECGs recorded during 

night-time. To assess whether the effects of sleep apnea 

on the ECG are more clearly manifested in heart rhythm 

fluctuations or ECG morphology variations, we analyze 

both sources of information separately using the same set 

of features, and give a comparison of the results. 

2. Material and methods 

The data we used in this study was taken from the 

annotated learning set of the Physionet [5] Apnea-

database. It consists of 35 single-channel overnight ECG-

recordings, each ~8h in duration, with a sampling rate of 

100 Hz. For each record, minute by minute annotations 

on the presence or absence of apnea episodes are 

available. Due to partly severe noise contaminations, we 

excluded signal b05 and some corrupted segments in the 

remaining signals from analysis. The total duration of 

analyzed signals was 16317 minutes. 

After upsampling the ECG signals to 1000 Hz by 

means of cubic spline interpolation, QRS-complexes 

were detected and classified as either normal beats or 

ectopics. Special care was taken on consistent fiducial-

triggers. From the QRS occurrences, we calculated the 

interbeat-interval (RR) series as well as series of 

Karhunen-Loève (KL) projection-coefficients on the first 

principal component. The latter were derived from two 
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different phases of the ECG cycle located relatively to the 

QRS fiducial point (Fig. 1). Before, we performed a 

baseline correction by subtracting a median filtered 

version of the ECG (width 125 ms) in the QRS-region. 

For the T-wave, we smoothed the signal using a 2nd order 

Savitzky-Golay filter of width 125ms and then removed 

the linear trend fitted to the ECG from R+100 ms to 

R+450 ms. 

For each ECG cycle n, vectors * +nx qrsE

 and * +nx tE  

comprising the QRS region (R-75 ms to R+75 ms) and 

the T-wave region (R+150 ms to R+400 ms) were 

extracted. From the ensemble of these vectors, we cal-

culated the respective covariance-matrices according to 
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is calculated from 
qrsC  as the eigenvector with 

the largest eigenvalue. For each ECG cycle n, the 

projection of the respective QRS-vector * +nx qrsE

 on qrsh
E

 

is calculated resulting in one scalar value or KL-

coefficient * +nqrsc  per heart beat. 
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Thus, * +nqrsc  represents a weighted deviation of beat 

n from the mean QRS complex. For the T-wave region, 

KL-coefficients * +ntc  are calculated in an analogous 

fashion. RR-intervals and KL-coefficients from ectopic 

beats or in shorter data gaps were interpolated using a 

local phase-space prediction algorithm [6]. 

Both, the RR-interval and the KL-coefficient series 

served as basis for further feature extraction. Whereas the 

RR-series contains heart rhythm information, the 

dynamic evolution of the KL-coefficients reflects 

changes of amplitude or morphology in the respective 

phases of the ECG-cycle. 

KL-coefficients have been found to successfully 

reflect ischemic changes in the ST-segment [7]. 

However, it must be noted that the KL series are 

generally dependent on posture; changes in posture 

introduce step-like structures in the time course that we 

removed using a 201 point median highpass-filter. 

Features were calculated from temporal segments of 5 

min duration that were shifted in time in increments of 1 

min over the total record. Since also the absolute 

variability of the KL-coefficients is likely to be posture 

dependent, we only used features that were normalized 

within one segment. This brings the additional benefit 

that outliers and artefacts in one segment do not corrupt 

the values of other segments what might happen when 

within-record standardizations for example to zero mean 

and unit variance are used. 

To capture the locally mostly rather regular CVHR-

pattern, we defined a measure of local signal similarity 

(lSimil) based on correlation analysis [8]: Each 5 min 

segment was band-pass filtered using a low-pass median 

filter of width 5, and a high-pass median filter of width 

51, emphasizing the CVHR-related pattern (Fig. 2). 

From the band-pass series, we extracted the central 

segment of 1 min duration and shifted it over the total 5 

min segment, calculating the normalized correlation 

coefficient for each time shift (Fig. 3). Since this measure 

is independent of absolute variability, it can be compared 

between and within records without any difficulties. 
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Fig. 3. Calculation of local similarity index lSimil. The 

central minute of each 5-min segment is cross-correlated 

with the whole segment. All values exceeding a threshold 

are summed. 
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Fig. 1. Regions used for calculation of the Karhunen-

Loeve basis vectors. Time is relative to the R-wave 

fiducial point. 
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Fig. 2. Nonlinear band-pass filter applied before 

calculation of local similarity index 

312



For analysis in the frequency-domain, each 5-minute 

segment of the series was submitted to power spectral 

density estimation based on the FFT using the Matlab 

PSD-command. Before, the series were equidistantly 

resampled at 3 Hz, and the mean was removed. We used 

a 256 point FFT with a Hanning window and an overlap 

of 128 points. The frequency resolution of the spectra 

was 0.012 Hz. To allow for inter-record-comparison and 

compensate for scaling differences related to changes in 

posture, we normalized the power of each spectral 

component to the total power of the 5-min segment. Only 

the second harmonic, centred at 0.024 Hz (period 41.7s) 

was used as marker of activity in the CVHR frequency 

range. We refer to this component as relPSD_2Ff. 

It is important to note that prior to performance 

evaluation, the time-course of all feature values was 

smoothed applying a median-filter of width 7. Feature 

performance was assessed as sensitivity (sens) and 

specificity (spec) by means of receiver operating 

characteristics (ROC). 

3. Results 

Visual inspection of annotated plots showed a more or 

less pronounced CVHR pattern in the RR-series for most 

of the analyzed records during phases of apnea (Fig. 4, 

trace 3). Here, the fundamental frequency in the RR-

series clearly is the repetition rate of the apnea episodes. 

However, we observed considerable variability of this 

pattern between different records and partly even within 

the same record. In Fig. 4 trace 5, the series of T-KL 

coefficients demonstrates the same fundamental 

frequency in an almost sinusoidal form. Moreover, higher 

frequency-components, obviously related to the strongest 

respiratory movements, are superimposed. The series of 

QRS-KL coefficients often contained higher-frequency 

components, even in the absence of respiratory move-

ments (Fig. 4). Nevertheless, we often observed swings 

that in position and duration were linked to the CVHR-

swings seen in the RR-series.  

The results of the ROC-Analysis are given in table 1. 

For both features, best results are obtained from the series 

of T-KL coefficients showing a performance of 83.6% / 

85.8% sensitivity / specificity for relPSD_2Ff and 87.7% 

/ 87.0% for lSimil. All series achieve better class 

separation with the local similarity feature compared to 

the spectral coefficient. The strongest increase in 

performance (about +6 % sensitivity and specificity to 

81.1% / 84.5%) is found in the RR-series. 

4. Discussion 

Our results show that significant information on sleep 

apnea is contained in both, heart rhythm and ECG 

morphology. We were surprised to note that the effects of 

apnea were reflected even more pronounced in the dyna-

mics of the T-KL-coefficients compared to heart rhythm. 

However, the results for the spectral component confirm 

our observation from the annotated plots that the T-KL-

coefficients often reflect the frequency of repetition of 

apnea episodes more uniformly and regularly than the 

CVHR-swings in the RR-interval series. 83.6% / 85.5% 

sensitivity and specificity compared to 75.6% / 78.2% for 

the RR-series clearly indicate this (table 1). 

A possible explanation is that heart rate variability is 

affected by many additional factors - i.e. different sleep 

stages - that may overlay and blur the CVHR pattern and 

reduce the relative power of the CVHR component. 

Moreover, the flanks of CVHR swings can demonstrate 

quite sharp accelerations and decelerations of heart rate 

that contribute to several frequency components whereas 

in the T-KL series we often observed a sinusoidal or 

triangular-like shape with smoother transitions. 

The improvement of the results for the RR-series when 

using the local similarity feature supports this 

interpretation; there is a considerable increase of 6% in 

chest
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QRS-KL coefs

T-KL coefs

Time [min]

190 190.5 191 191.5 192

 
Fig. 4. 2.5 minute time course of chest and abdominal 

movements (upper traces) and calculated series of RR-intervals 

(3rd trace), QRS KL-coefficients (4th trace) and T-wave KL-

coefficients (5th trace) during a phase of apnea. Excerpt of 

record a04. 

 

 

Table 1. Classification performance of single features 

derived from RR-series and QRS-/T- KL coefficients 
 

Feature Signal Sens. Spec. 

T-KL 83.6 85.5 

QRS-KL 72.7 76.7 
relPSD_2Ff 

(0.024 Hz) 
RR  75.6 78.2 

T -KL 87.7 87.0 

QRS-KL 74.8 78.7 
local 

similarity 
RR 81.1 84.5 
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sensitivity and specificity. This feature is not dependent 

on predefined frequency bands but quantifies the 

repetition of the most dominant structures in the time 

domain. Moreover, it is more tolerant against 

irregularities in the repetition rate of apnea episodes. 

Probably, the latter is the reason for the further 

improvement on the T-KL coefficients to 87.7% / 87.0% 

(Table 1). The fact that a single measure achieves this 

performance inter-individually using a simple threshold 

decision is remarkable. 

It is well known, that the duration of the RT-interval is 

modulated by the heart rate, and this modulation is likely 

to be reflected also in the T-KL coefficients. Insofar, it is 

not surprising to find a modulation in the CVHR 

frequency range in this series, too. Nevertheless, it seems 

surprising that this lower frequency component appears 

even more pronounced than the higher frequency 

modulation related to respiratory movements, and visual 

analysis often revealed marked changes in T-wave 

morphology that seem hardly attributable solely to 

variations in heart rate. Moreover, it is not evident why 

the classification rate obtained from the T-KL-

coefficients then is better than the performance of the 

putatively ‘original’ RR-series.  

From this point of view, the question arises whether 

additional mechanisms might induce dynamic changes in 

the T-Wave region during episodes of apnea, what from 

physiology is plausible since the T-wave, especially the 

ST-segment, is known to be sensitive to ischaemic events 

that in more moderate form are conceivable for apnea, 

too. This also could explain the clearly decreased 

performance of the QRS-KL coefficients compared to the 

T-KL-coefficients (table 1), however at this stage we 

cannot rule out that the observed difference, at least in 

part, is the result of an artifact due to the low original 

sampling rate of only 100 Hz. This might bring a loss of 

signal amplitude in the fast signal changes of the QRS 

complex that also affects the KL-coefficients. However, 

this effect should be reduced if the signal has been 

properly band limited before analog-to-digital 

conversion. Although we observed a ‘high frequency 

contamination’ in the series of QRS-coefficients, even in 

absence of respiratory movements, there were also many 

‘clean’ QRS-KL series. The properties were generally 

much more inconsistent compared to T-KL, and could 

change dramatically even within the same record, 

presumably related to changes in posture. Multi-channel-

ECGs recorded with a higher sampling rate should be 

used to resolve whether this is an artifact, a postural 

effect or a true difference. 

5. Conclusion 

From our results, we can conclude that rhythm as well 

as morphology features contain important information on 

the problem of apnea detection. Both phenomena reflect 

the effects of irregular respiratory activity found during 

phases of apnea. However, our results suggest that the 

variability of ECG morphology reflects apnea related 

patterns more uniformly compared to heart rate. For 

further development, and to resolve the nature of the 

difference between properties of the T-Wave and the 

QRS-complex morphology indices, multi-channel 

recordings with higher sampling rate should be acquired. 
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