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Abstract

A method for classifying non linear interactions
between two event series, a forcing input and a forced
output, is proposed. The approach allows to classify: 1)
independent dynamics;, 2) quasiperiodic dynamics; 3)
n:m periodic synchronized dynamics in which n events of
the forced signal occur every m cycles of the driving
signal; 4) aperiodic dynamic. The method is automatic
and fully independent of the researcher’s judgment. In
addition, it calculates the ratio and the strength of the
coupling in the case of synchronized dynamics. The
method is applied to verify whether sympathetic
oscillators  underlying the discharges of single
postganglionic sympathetic neurons innervating the
ventral caudal artery of the rat tail could be synchronized
by the lung inflation cycle. The application confirms the
capability of the method in classifying the dynamics and
the synchronizing action of the lung inflation cycle over
the single sympathetic neuron discharges.

1. Introduction

Perturbing the activity of biological oscillators by
means of a periodical driving input results in full
independent, quasiperiodic, n:m phase-locked or
aperiodic dynamics depending on detuning (i.e. the
difference between the frequencies of the forcing input
and of autonomous self-sustained oscillator), on the
amplitude of the driving input and on the strength of the
coupling between the two oscillators [1]. Usually
classification of these dynamics is obtained by
superimposing the forced and forcing signals [2]. This
practice leads to a classification largely dependent of the
experience of the researcher and not fully reproducible.
Moreover, it becomes difficult to perform when sliding
dynamics or relative co-ordinations produce changes of
the coupling ratio. Also noise corrupting the repetitive
coupling scheme may render impossible a robust
classification based on visual inspection. In addition, the
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strength of the coupling between driving and driven
oscillators cannot be quantified.

The aim of this study is to propose an automatic, fully
reproducible, method for classifying non linear
interferences between forcing and forced event series [3].
Four types of dynamics are classified: 1) independent
dynamics in which the relative phase grows uniformly; 2)
quasiperiodic dynamics in which the relative phase grows
non-uniformly; 3) n:m synchronization in which the two
event series are phase-locked such a way that n events of
the forced activity occurred in m cycles of the forcing
signal; 4) aperiodic dynamics in which the relative phase
changes irregularly. The method is based on the
contemporaneous use of several tools (the relative phase
probability density function, the probability density
function of the count of the forced responses per forcing
cycle, the normalized corrected conditional entropy of the
relative phase sequence and a surrogate data approach).

The method was applied to data extracted from one
anesthetized, artificially ventilated rat to evaluate the
interactions between the lung inflation cycle and two
different sympathetic oscillators monitored through the
discharges of two, simultaneously recorded, single
postganglionic sympathetic neurons innervating the
ventral caudal artery in the rat tail [4] as a function of the
mechanical ventilatory rate.

2. Methods

2.1. Tools for classifying interactions

Given two event series t,={t,(k), k=1,....K} and
t,={t,(j), j=1.....,J}, where t (k) and t,(j) represent the
times of occurrence of the k-th and j-th forcing and
forced events of u and y respectively, the relative phase
of the j-th event of y with respect to u is defined as

2n(ty ()t (k)
o0 = k-1, 00

with t,(K)<t(j)<t,(k+1) and where t,(k+1)-ty(k) is the
duration of the k-th forcing cycle. When no driven
response is found in a forcing cycle, the relative phase is
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set to —1, thus codifying a missed response of vy.
Therefore, the relative phase series o={¢(i), i=1,...,J+L}
is a mixed sequence of J values ranging from 0 to 27 and
L values equal to —1. The relative phase series is referred
to as phase in the following.

The first tool on which classification is based is the
phase probability density function (PPDF). It is estimated
with a phase resolution of 0.25 radians after suppression
of the values codifying the missed responses (i.e. —1).
The parameters extracted from PPDF are: 1) the Shannon
entropy (SE) of the PPDF; 2) the number of peaks. SE
ranges from 0 in case of a PPDF with a unique peak with
probability 1 to a theoretical maximum value equal to
3.22 in case of a uniform PPDF (with that specific phase
resolution and using the natural logarithm to calculate
SE). The presence of peaks in the PPDF is taken as an
indication of the repetitive occurrence of events of y at
specific phases of u. The second tool used to decide the
class to which the non linear interferences belong is the
probability density function of the number x of forced
responses of y per forcing cycle of u (i.e. the count
probability density function, CPDF). The parameter
extracted from the CPDF is the mean value av[x].
Therefore, 1/av[x] provides the mean number of forcing
cycles necessary to count one response of y. The third
tool is the normalized corrected conditional entropy [5]
(NCCE), a function based on the conditional entropy but
capable of preventing its artificial decrease related to the
shortness of the data sequence. This function is applied to
the phase sequence after normalization (i.e. the mean
value is subtracted and the result is divided by the
standard deviation) and quantization. Normalization is
applied only to values different from —1 (i.e. it is not
applied to the missed responses). After normalization the
normalized sequence is uniformly spread on 6
quantization values (from 0 to 5). As the value —1 again
continues to codify the missed responses even after
quantization, the actual number of quantization levels are
7. From the NCCE a regularity index p was derived [5].
This index ranges from 0 (completely unpredictable
phase series) to 1 (fully predictable phase series).

2.2.

Classification is based on a surrogate data approach
[6] applied to the phase series. Two surrogate data sets
are generated. The first set consists of 20 realizations of
identically distributed white noise ranging from 0 to 27.
This set is useful to test whether the PPDF is uniform.
Indeed, if the SE calculated on the original phase series
(SE,) is smaller than a SE significance threshold derived
from the surrogate data set (i.e. av[SE;]-2*sd[SE;], where
av and sd are the mean and standard deviation operators
applied to the Shannon entropies calculated on surrogate
phase realizations, SEs), then the null hypothesis of a flat
PPDF is rejected. In the case that the SE,<av[SE]-
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2*sd[SE], the number of PPDF peaks is searched as
follows. The PPDF, is compared to a significance
threshold derived from PPDFs. At a given phase if the
PPDF, is larger than av[PPDF]+2*sd[PPDF;], then that
specific phase is more likely than the same phase in a
uniform distribution. If this excess is larger than 0.03 and
takes place for an isolated phase, then one reliable peak is
detected. If this excess is larger than 0.03 and it takes
place for several adjacent phases, then the number of
reliable peaks is equal to the number of relative maxima.
If, at any given phase, PPDF, is below the PPDF
significance threshold or the excess is below 0.03 no
reliable peak is detected.

The second set of surrogate data consists of 20
realizations of processes obtained by shuffling the
temporal order of the samples of the phase series
(including the values codifying the missing responses)
and of the number of driven events per driving cycle, thus
destroying correlation between samples but maintaining
the PPDF and CPDF. Two independent random
permutations are utilized. This set is useful to test
whether the phase sequence is unpredictable. Indeed, if
the regularity index p calculated on the original phase
series (p,) is larger than a p significance threshold
derived from the surrogate data set (i.e. av[p,]+2*sd[p;],
where pes are the regularity indexes calculated on the
surrogate phase series), then the null hypothesis of a
unpredictable phase series is rejected.

2.3.

The interactions between u and y event series are
classified according to three tests: 1) SE test; 2) PPDF
test; 3) p test. The SE test checks if SE,<av[SE;]-
2*sd[SE;]. The PPDF test finds out the number of reliable
peaks in the PPDF,. The p test checks if
po~av[ps]+2*sd[ps]. If the SE test is not passed and the p
test is fulfilled, then u and y are uncoupled. If both SE
and p tests are passed but the PPDF test does not reveal
any reliable peak, then u and y are quasiperiodic. If both
SE and p tests are passed and the PPDF test finds out
some reliable peaks, then u and y are periodic. If the p
test is not fulfilled, then u and y are aperiodic. In the case
of periodic dynamics: 1) the numerator n and the
denominator m of the coupling ratio are estimated as the
number of reliable peaks in PPDF, and as the rounding to
the nearest integer of the product between n and 1/av[x]
respectively; 2) p, is taken as a measure of the coupling
strength.

3.

Classification

Experimental protocol and data

analysis
We make reference to [4] for a complete description of

the experimental preparation. Briefly, one male Sprague
Dawley rat was anesthetized and artificially ventilated.



Tracheal pressure was recorded and the times of
occurrence of the lung inflation onset (LIO) were
extracted, thus forming the event series t;;0={tr0(k),
k=1,....Npio} where t;jo(k) was the timing of the k-th
LIO and Npjo—1 is the total number of ventilatory cycles.
Using a focal technique the discharges of two single
postganglionic neurons (PGNs) were simultaneously
recorded from the surface of the ventral caudal artery in
the tail. The temporal position of the PGN action
potential peak (PGNAPs) was detected, thus forming the
two event series tPGNAPlz{tPGNAPIG)a jzl,...,NpGNAp]} and
trnar2={trrap2(j)s J=1,....Npgnara ), Where tpgrapi(j) and
tpgnap2(j) represented the timing of the j-th PGNAP and
Nponapr and Npgnaps Were the total number of PGNAPs.
Five lung inflation rates were utilized to perturb the
activity of the sympathetic oscillators (0.58, 0.64, 0.76,
0.95, 1.99 Hz). Four of these frequencies were in the
range of the dominant intrinsic rhythm of the PGN
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Figure 1. 1:1 synchronization: LIO (a, solid line) and
PGNAP (a, dotted line) event series, PPDF, (b, filled
bars) and PPDF significance threshold (b, open bars),
CPDF (c) and NCCE calculated on the original phase
series (d, solid line) and on a realization of surrogate data
(d, dotted line). See text.
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discharge (from 0.4 to 1.2 Hz), while the remaining one
(i.e. 1.99 Hz) was largely above this range [4].
Experiments were carried out under central apnea as
verified from by the absence of diaphragm EMG activity.
PH, PaO, and PaCO, were continuously monitored and
maintained in normal range.

4. Results

Fig.la shows an example of LIO and PGNAP event
series (solid and dotted lines). PGNAPs occur more likely
at one specific phase of the lung inflation cycle. PPDF,
(Fig.1b, filled bars) is different from a uniform
distribution. Indeed, SE,=2.37 is smaller than SE
significance threshold (i.e. 3.16) and one dominant peak
emerging from the PPDF significance threshold (Fig.1b,
open bars) can be detected, thus leading to n=1. Fig.l¢c
proves that av[x] is larger than 1 (i.e. 1.41), thus leading

to m=1. NCCE, (Fig.1d, solid line) shows a deep
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Figure 2. 2:1 synchronization: LIO (a, solid line) and
PGNAP (a, dotted line) event series, PPDF, (b, filled
bars) and PPDF significance threshold (b, open bars),
CPDF (c) and NCCE calculated on the original phase
series (d, solid line) and on a realization of surrogate data
(d, dotted line). See text.



minimum, thus producing a p,=0.14 above the p
significance threshold (i.e. 0.11). From all these data the
dynamics is classified as 1:1 synchronized.

Fig.2a shows another example of LIO and PGNAP
event series (solid and dotted lines). PGNAPs occur more
likely at two specific (even though very close) phases of
the lung inflation cycle. PPDF, (Fig.2b, filled bars) is
different from a uniform distribution. Indeed, SE,=2.59 is
smaller than SE significance threshold (i.e. 3.18) and a
dominant peak with two relative maxima emerging from
the PPDF significance threshold (Fig.2b, open bars) can
be detected, thus leading to n=2. Fig.2¢c proves that av[x]
is larger than 2 (i.e. 2.11), thus leading to m=1. NCCE,
(Fig.2d, solid line) shows a minimum (although not
deep), thus producing a p,=0.11 slightly above the p
significance threshold (i.e. 0.10). From all these data the
dynamics is classified as 2:1 synchronized.

While varying the lung inflation rate, we found 6
examples of periodic dynamics (60%, one case of 1:1,
2:2, 3:2, 2:5 and two cases of 2:1 periodic patterns) and 4
examples of aperiodic dynamics (40%). However, when
synchronization occurs, the coupling strength was very
low (only slightly above the significance threshold). In
40% of the experiments, when both PGN1 and PGN2
discharges were synchronized, the coupling ratios were
different (at 0.76 Hz 1:1 and 2:1 and at 0.95 Hz 2:2 and
2:1 for PGN1 and PGN2 discharges respectively). In 40%
of the experiments we found different types of dynamics
in PGN discharges (i.e. n:m synchronization and
aperiodicity in PGN1 and PGN2 discharges respectively).

5. Discussion

Since the analyses are usually based on visual
inspection, the classification of the non linear interactions
between a forcing event series and a forced one are
limited by the low reproducibility of the results [2].
Visual inspection-based approaches become more and
more impracticable in presence of noisy signals or sliding
dynamics (i.e. the type of coupling patterns change
during the recording). The proposed approach allows one
to produce a classification virtually reducing to zero the
human intervention through a sequence of rules that are
easy to implement. In addition, the most repetitive pattern
is extracted even in presence of noise or sliding
dynamics.

The application to single postganglionic neurons
discharges confirms the ability of the lung inflation cycle
to synchronize sympathetic oscillators responsible for
regulating single neurons activities [4]. Indeed, n:m
periodic synchronized dynamics were found in 60% of
the recordings. However, the interactions are very weak,
as confirmed by the low values of the coupling strength.
The analysis confirms also that sympathetic oscillators
governing the single postganglionic neuron discharges
work at different frequencies and/or behave differently
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when forced by mechanical ventilation. Indeed, the
discharges of the two neurons interact differently with
ventilation (different types of dynamics are observed in
40% of the experiments) or, when both discharges are
synchronized (it occurs in 40% of the experiments), the
coupling ratios are different.

6. Conclusions

The proposed method is efficient in classifying the non
linear interactions resulting from the driving action of an
event series on a driven one and provides useful
parameters such as the ratio and strength of the coupling.
The method confirms that the lung inflation cycle is
capable of synchronizing the discharges of single
postanglionic neurons innervating the rat tail and that the
underlying sympathetic oscillators form a population with
different frequencies and/or different capabilities of
synchronizing to the lung inflation cycle.

Acknowledgements

This study was supported by the Wellcome Trust.

References

[1] Pikovsky A, Rosenblum M, Kurths J. Synchronization - An
universal concept in non linear sciences. Cambridge
University Press 2001.

Guevara MR, Shrier A, Glass L. Phase-locked rhythms in
periodically stimulated heart cell aggregates. Am J Physiol
1988;254:H1-10.

Porta A, Montano N, Furlan R, Cogliati C, Guzzetti S,
Gnecchi-Ruscone T, Malliani A, Chang H-S, Staras K,
Gilbey MP. Automatic classification of interferences
patterns in driven event series: application to single
sympathetic neuron discharge forced by mechanical
ventilation (submitted to Biol Cybern).

Chang H-S, Staras K, Gilbey MP. Multiple Oscillators
provide metastability in rhythm generation. J Neurosci
2000;20:5135-43.

Porta A, Baselli G, Liberati D, Montano N, Cogliati C,
Gnecchi-Ruscone T, Malliani A, Cerutti S. Measuring the
degree of regularity by means of a corrected conditional
entropy in sympathetic outflow. Biol Cybern 1998;78:71-
78.

Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD.
Testing for nonlinearity in time series: the method of
surrogate data. Physica D 1992;58:77-94.

(2]

Address for correspondence.

Alberto Porta, PhD

Universita’ degli Studi di Milano
Dipartimento di Scienze Precliniche (DiSP)
LITA di Vialba

Via G.B. Grassi 74

20157, Milan

Italy

E-mail: alberto.porta@unimi.it


mailto:alberto.porta@unimi.it

