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Abstract

This study compares a neural network-based
autoregressive exogenous (NNARX) model with a linear
autoregressive exogenous (ARX) model in reconstructing
central aortic pulse curve from peripheral arterial pulse.

Invasive aortic and radial tonometry pressures were
recorded in 20 patients in rest condition. A set of 10
patients (learning) was used to estimate the model
parameters, the remaining 10 patients (test set ) were
used for validation. The estimated waveform of aortic
pressure obtained by NNARX results more accurate than
that estimated by linear ARX model providing a more fine
reconstruction of dicrotic notch and systolic flex.
Comparison of Augmentation Index measurement
computed from NNARX and ARX reconstructed pressure
signals with the reference value derived from invasive
aortic waveform showed an improvement in accuracy of
the NNARX measure.

1. Introduction

Aortic pressure signal conveys important information
about cardiovascular system; valuable clinical features
such as augmentation index [1], arterial stiffness, and LV
ejection duration can be derived. However the invasive
nature of the measure restricts their use. The recent
availability of high fidelity non-invasive peripheral
pressure signal by applanation tonometry stimulated the
research of methods for estimating the aortic pressure
waveform for widespread clinical use.

In most studies the central pressure signal is
reconstructed from peripheral (femoral, carotid, radial,
finger) waveforms using a transfer function estimated by
Fourier transform. More recently, an approach based
upon linear ARX model estimation has been proposed
[2,3]. However the physiological components involved in
the propagation of the central aortic pressure wave
towards the periphery are intrinsically non linear, and a
linear approximation of their characteristics on large
variations like that of pressure signal, can result unable to
reproduce waveform details. In particular the flex around
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the systolic peak which is at the base of augmentation
index (AI) computation. Al takes into account the
augmentation of aortic pressure by the return in systole of
the wave reflected from small peripheral arteries, and it is
highly predictive of cardiovascular mortality.

The present study estimates a Neuronal Network based
non linear model [4,5], and compares the reconstructed
central pressure signal with the one obtained by the
estimation of a linear ARX model [6]. The accuracy of
the reconstructed pressure signals was evaluated using
the sum of squares errors respect to true (invasive) central
pressure signal. Moreover the augmentation index (AI)
values computed on the estimated signals were compared
with those extracted from the true signal.

In this work has been used the “Neural network based
system identification toolbox™ (NNSYSID) of Magnus
Norgaard [4] which can be downloaded free of charge
from the address
http://www.jau.dtu.dk/research/control/nnsysid.html.

25 Methods

Aortic invasive and radial tonometric pressure signals
were simultaneously acquired in 20 patients undergoing
diagnostic left heart catheterization for known or
suspected ischemic heart disease. Central pressure was
obtained by a fluid-filled catheter placed in aorta. Radial
pressure was recorded by applanation tonometry
technique using a Millar SPT 301 transducer with an
amplifier TCB 500. Signal acquisition was performed at
500 Hz with 16 bits A/D converter continuously for 5
minutes in bed rest condition before undergoing to
diagnostic manoeuvres. Both pressure signals were low
pass filtered (20Hz), mean value was removed and
decimation at 50Hz was performed.

For each recording, a two minute long sequence of
signal without artifacts was selected. The set of 20
records was partitioned: 10 patients were used for
learning and the other 10 for validation set. Each record
was normalized to zero mean and unitary variance, this
leads to no lack of information because the amplitude of
tonometric pressure signal depends on ability of the
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operator in performing vessel applanation and, on the
other hand, the Al is invariant on scale change.

As we are interested in the reconstruction of the aortic
pressure from a peripheral pulse, we try to estimate
directly a model from peripheral to central, inverse
respect to the physiological one related to the forward
wave propagation.

A Neuronal Network AutoRegressive eXogenous
(NNARX) model [4,5] was estimated on the learning set
using radial pressure as input and aortic pressure as
desired output. Similarly, a linear AutoRegressive
eXogenous (ARX) model [6] was estimated. The results
obtained from validation set were compared together.
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Figure 1. The system model (in the dashed box) and the
scheme for its identification.

An ARX model structure was selected for its
simplicity in estimation of the parameters respect to the
more general AutoRegressive Moving Average
eXogenous (ARMAX).

A general Non linear AutoRegressive eXogenous
(NARX) model is expressed by the equation

() = ft =Dy (1 =1,), X(t =), ... x(t —d =1, +1)) +£(1)
where ¢ denotes discrete time, y(#) is the output (aortic
pressure signal), x(2) is the input (radial signal), E(t) is
white noise and f () is a general non linear function.
The constant 7, is the number of autoregressive terms

(past output values y(t-k)), n, is the number of moving

average terms (past input values x(7-k)), d represents the
delay between the input and its effect on the output. It
should be noted that there is no moving average (MA)
terms on 8(!). The figure 1 shows the NARX system and
the prediction error scheme used for model identification.
Introducing the regression vector

() =Wt =1),...,y(t=n,),x(t =d),...,x(t=d —n, + D]

we can write:

w0 =f(@e) +&)

where the predictor is y(r) = f(g(1)).

The problem consists in the estimation of the unknown
function  f(¢(¢f)) using the training  set
ZY ={[x(1),»(O]|t =1,...,N} so that the predictor j(r)
is “close” to the actual value y(¢).

The most used criterion of “closeness” is the least squares
which minimizes the sum of squared residual errors:
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where e(n) = y(n)— y(n)

The general function f(¢(f)) can be restricted to belong
to a class of parametric functions f(g(r),0), the problem
is so reduced to determine the unknown vector of
parameters 0 which minimizes £ .

] =arg:nin{§(2”,9)}

In this work are considered two classes of parametric
functions: a) the linear function; b) the forward multilayer
perceptron neural network.

Linear ARX model.
The model is expressed by the equation

y(0)=0"g(1) +£(t)
where 0=[a,,...,a, ,b,,...,b, ]' and the predictor is
() =079(r)

For a set of N data the previous equation yields the
matrix formulation

y=00+¢
The measure & results a quadratic function of @, it
follows that the minimum is unique and it can be
determined analytically (if the following matrix inversion
is possible).

o=(o@f @’y
If £(n) is white i.id. the estimate © results unbiased,
consistent and of minimum variance.

NNARX model.
The predictor y(¢) is a nonlinear function of the class
neuronal network functions.

)= f(o(1),8)
Now the measure & is not a quadratic function of 0,

then the minimization problem must be solved with
iterative procedures and local minima can occur. The
selection of a NNARX structure leads to a not recurrent
NN (network inputs does not depend from previous
network outputs, i.e. the term ¥(f) is not argument of
the function f(¢(s),0)) and this reduces convergence
and instability problems.

One of the most powerful minimization methods is the
Gauss-Newton  with  Hessian  approximation of
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Levenberg-Marquardt. This method was used for its
convergence properties and robustness. The iterative
procedure for weight updating is

8n+! = 0n - 77 ; H—]Vé\",

=6,
Where V¢, I g_p IS the gradient and H is the Hessian

matrix which is approximated by the outer product of the
instantaneous gradient of the output w.r.t. weights:
A regularization term is used in the & cost function in

order to improve generalization. This term penalizes the
cost measure & of a value increasing with the square

value of each weight.
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Where D is a diagonal matrix, we use the uniform
settingg D=alwith 0 <a<<1. The regularization

term leads an exponential decay of the weights @ which
are non essential for the fitting. The surface of the cost
function £(@) results more smooth and with less local

minima, on the other hand the solution results polarized
as all the parameters get a value less then the optimal.

Model Estimation

As we are estimating a model inverse respect to the
physiological process we need to anticipate the radial
signal so that radial pulse (input of the model) occurs
before the aortic waveform from which it derives.
Different delay time were tested and the one of -240ms
provided better results.

Linear ARX estimation: the estimation of linear ARX,
which will provide the reference performance for the
evaluation of the NNARX, was performed on the 10
patients learning set getting an inter-patient model. As the
pressure signals and the cardiovascular system changes
from patient to patient, estimation of intra-patient models
was performed in order to compare the global inter-
patient variability with the intra-patient variability.

A correct order setting is a prerequisite to get good
estimates; a too high model order can fit the random
structure in each single data sequence producing poor
generalization. On the other hand, low order model can
be unable to represent the system dynamic distorting the
output signal. Different orders, ranging from 5 to 30,
were tested by the Akaike Information Criterion (AIC),
and by cross validation comparing the obtained ¢&

measures. The order [8,15] was selected.

Neural Network ARX estimation: The NN structure, we
choose, consists of a full connected multilayer perceptron
(MLP) with one hidden layer with hyperbolic tangent
activation functions and one output layer with linear
activation. The lag space was determined by cross

validation, it turns out n, =6, n, =12 ie. 18 inputs.

Moreover 8 artificial neurones were selected for the
internal layer, resulting a total number of 161 weights
(including neuron polarization). The regularization factor

- was set to le-5. Parameter setting resulted from the

examination of the behaviour of the & criterion on the

learning and on the test set with the increasing of one
parameter and keeping constant the others. As expected,

the average value of f on the test set, after an initial

decrease got a minimum value and returned to increase,
however the region of the minimum was flat and quite
wide; ie. different parameter settings led to similar

performance. The variance of & showed a similar

behaviour. The increasing of the regularization term led
to translation of this flat region towards high number of
weights. ;
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Figure 2. Pressure signals; from top: radial, aortic, linear
estimate, NN estimate.

E i Results

The visual inspection of the signals provides the best
approach to preliminarily catch the accuracy of the aortic
pressure waveform reconstruction by Neural Network
modelling respect to the linear one. The figure 2 shows
an example extracted from the test set. From top to
bottom: tonometric radial pressure, true aortic pressure,
linear ARX reconstructed and NNARX reconstructed
pressure. The estimated waveform obtained by NNARX
mimics more closely the aortic signal than that estimated
by linear ARX model. In particular, it results in a more
accurate reconstruction of dicrotic notch and systolic flex.
A quantification of this improvement can be get
examining the global mean square error (mse) obtained
on the test set. The mse value for NNARX was 0.059,
corresponding to less then 60% of the value of 0.098
obtained by the linear ARX model. The table 1 shows the
individual results for the 10 patients of the test set; each
row is relative to a patient and on each column are
reported, from left to right, the mse resulting from the
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linear approach, the mse from the NN approach, the Al
computed on the aortic signal, the Al computed from the
linear estimate and the AI computed from the NN
estimate.

Table 1. Results on 10 patients test set.

mse_In  mse_nn Al Al _In Al_nn
0.108 0.109 0.510 0.658 0.549
0.107 0.082  0.605 0.643 0.584
0.238 0.076  0.729 0.631 0.633
0.053 0.084  0.653 0.661 0.600
0.014 0.022 0.584 0.685 0.597
0.017 0.041 0.582 0.724 0.682
0.086 0.017 0.544 0.728 0.541
0.149 0.040  0.669 0.711 0.592
0.139 0.067 0.678 0.574 0.611
0.066 0.050 0.524 0.714 0.566
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The more accurate reconstruction of the waveform
details (appreciable in x-y plot example of figure 3) leads
to a more incisive difference in estimating Al diagnostic
measure. The comparison of Augmentation Index
measurements computed on NNARX and on ARX
reconstructed pressure signal with the true value derived
on invasive aortic waveform was performed. The
standard deviation of the difference from linear estimated
Al and true Al resulted 0.11, while the one relative to NN
estimate was 0.06, yielding a confidence interval for the
NN measure corresponding to about the half of the linear
estimated measure. The variance ratio F-test rejected the
hypothesis of equal variance at a significance level of
0.05.

4. Discussion and conclusions

Neural network approach improves the accuracy of the
reconstructed aortic pressure waveform from noninvasive
recording of radial artery pressure signal. In particular the
improvement concerns waveform details with high
frequency content allowing a better estimation of Al and
thus opening promising perspectives for clinical use,
namely in the cardiovascular prevention field.

However, some pitfalls still affect the results. The
residual of the estimated aortic pressure obtained by the
NNARX model using only the radial pressure as input
got a power greater than expected and resulted
autocorrelated. It may be at least partly explained by the
quite wide variability of the radial pressure waveform
observed from patient to patient, which is due to both
intrinsic  variability, i.e. different cardiovascular
conditions, and the amplitude instability of the
applanation tonometry measurement. Nonetheless, the
shape of the estimated signal resulted close to the aortic
pressure wave, which appeared better reconstructed than
by ARX. The overall performance of the NNARX model
may be further improved by expanding the learning set,
as well as by using an operator-independent. tonometric
device.
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Figure 3. Example: linear estimated pressure versus aortic
(top), NN estimated pressure versus aortic (bottom).
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