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Abstract

In this contribution, we present the theoretical justifi-

cation that give support to the suitability of Blind Signal

Separation (BSS) techniques for the estimation of the atrial

activity (AA) present in ECGs of persistent atrial fibrillation

(AF). The application of BSS methods to this problem

needs the fulfillment of several conditions regarding AA,

ventricular activity (VA) and the fashion in which both

activities arise on the body surface, that will be justified

along the paper. To empirically validate the model, an ICA

method is applied to 10 real 12-Lead recordings of AF. The

identification of AA is put forward based on kurtosis and

spectral analysis. The kurtosis value of the estimated AA

was always below zero (kAA = −0.36 ± 0.14), while for

the VA was above 20 (kV A = 30.44±7.83). As conclusion,

the verification of the AF bioelectric model makes feasible

the application of BSS, and this contribution has indeed

justified, for the first time, the theoretical background that

supports the applicability of these techniques and empiri-

cally its usefulness to solve the AA extraction problem.

1. Introduction

Atrial fibrillation (AF) is the most common sustained

arrhythmia encountered by clinicians and occurs in ap-

proximately 0,4% to 1,0% of the general population. Its

prevalence increases with age, and up to 10% of the

population older than 80 years has been diagnosed with

AF. With the projected growth of the elderly population, the

prevalence of AF will certainly increase [1]. There is also

increasing awareness that atrial fibrillation is a major cause

of embolic events which in 75% of cases are complicated

by cerebrovascular accidents [2]. For the study of AF it is

necessary to separate AA from VA in the ECG. This can be

carried out by direct cancellation of VA [3], but also the use

of BSS techniques has demonstrated to be very effective for

the AA extraction problem y AF [4, 5]. Nevertheless, the

applicability of BSS for the separation of AA and AV has

not been formally justified. Hence, the goal of this work is

to justify the fulfillment of the conditions for AA and AV

that allow its separation via BSS from the ECG in AF.

2. BSS approach to atrial fibrillation

If BSS methods are to be applied to the AA extraction

from the 12-lead ECG in AF episodes, the fulfillment of

several basic considerations regarding AA, VA and the

fashion in which both activities arise on the body surface

must first be justified: independence of the sources, non-

gaussianity, and nonorthogonal observations generated by

instantaneous linear mixing of the bioelectric sources [6].

This section begins with an outline of the basic mathe-

matical principles behind the BSS of instantaneous linear

mixtures. Then, physical mechanisms of AF generation

will give support to the independence and nongaussianity

of AA and VA. Next, the validity of the instantaneous linear

mixing model for the ECG is endorsed through the matrix

solution for the forward problem of electrocardiography.

The corroboration of these conditions make it possible

to assume that the ECG of a patient in AF satisfies the

BSS instantaneous linear mixture model, thus justifying the

application of BSS techniques.

2.1. BSS principles

The BSS consists in recovering a set of source signals

from the observation of linear mixtures of the sources. The

term “blind” emphasizes that nothing is known about the

source signals or the mixing structure, the only hypothesis

being the source mutual independence [6]. Mathematically,

let us denote s(t) ∈ ℜN the vector that represents the N

source signals, and x(t) ∈ ℜM the M sensor output vector,

i.e. the observation vector, where it is assumed that M ≥

N , so that there are at least as many sensors as sources. In

the noiseless case, the BSS model for instantaneous linear

mixtures reads

x(t) = As(t) (1)

where A ∈ ℜM×N is the unknown mixing matrix. The

objective of BSS is to estimate s(t) and A from the

exclusive knowledge of x(t). A comprehensive reading of

BSS principles can be found in [7]
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2.2. Mechanisms of atrial fibrillation

AF is characterized by uncoordinated atrial activation

and is due to the unpredictable conduction of these disor-

dered impulses across the atrial myocardium [1]. Theories

of the AF mechanism involve two processes [1]: enhanced

automaticity in one or several foci and reentry involving

one or more circuits. The focal origin of AF is supported

by experimental models and appears to be more important

in paroxysmal AF [2]. Nevertheless, the most widely

accepted theory of persistent AF is based on the continuous

propagation of multiple wavelets wandering throughout the

atria [1, 2]. The fractionation of the wave fronts as they

propagate results in self-perpetuating independent wavelets.

The number of simultaneous wavelets depends on the

refractory period, mass and conduction velocity along the

atria, and these parameters present severe inhomogeneities

in AF [1]. Moreover, the self-perpetuating propensity of

AF is justified by the electrophysiological remodelling, a

phenomenon consisting in the progressive shortening of

effective refractory periods, thus increasing the number of

simultaneous wavelets and, as a consequence, the episode

duration [1].

2.3. Independence and nongaussianity

During an AF episode several independent wave fronts

propagate simultaneously throughout the atria but only a

reduced part of them will reach the AV node. Moreover,

the properties of the AV node tend to limit strongly the ven-

tricular activation. First, the excitability of cells within the

AV node is significantly lower than the atrial myocardium

[1]. Second, the AV node demonstrates decremental con-

duction, where impulses may traverse only a portion of the

AV node before blocking [2]. One clinical manifestation of

this property is the concealed conduction, in which an atrial

impulse, that itself does not conduct to the ventricles, may

impair conduction of subsequent impulses, blocking the

propagation of other impulses that otherwise would have

conducted [2]. As a consequence of the aforementioned

AV node properties, most of the atrial wave fronts do not

reach conduction and are not able to produce ventricular

depolarization.

On the other hand, the physical origin of the atrial

wave front that produce ventricular depolarization could

be very variable. This uncoordinated operation of AA

and VA during an AF episode makes it reasonable to

regard both activities as physically independent and, in

turn, as generated by statistically independent sources of

cardioelectric activity. The validity of the atrio-ventricular

statistical-independence assumption is in line with the find-

ings reported by other authors in the field [1, 2, 3]. With

respect to nongaussianity, VA presents high values within

the heart beat (QRS complex) and low values in the rest

of the cardiac cycle. Hence, the histogram analysis of VA

reveals an impulsive, i.e., supergaussian, behavior [8] with

typical kurtosis values above 15. On the other hand, the AA

of an AF episode has been accurately modeled as a saw-

tooth signal consisting of a sinusoid with several harmonics

[3], which behaves, statistically speaking, as a subgaussian

random process. Moreover, when a QRS complex and T

wave cancellation algorithm, like those described in [3, 8],

is employed to cancel out VA over one ECG lead, it can be

observed that the remaining ECG, mainly the AA, present

a subgaussian behavior with negative kurtosis values. The

nongaussian assumption of AA and VA is hence justified

and will also be shown in the Results section.

2.4. ECG instantaneous linear model

There are several physical models to represent both the

cardiac current sources and the enclosing torso shape and

conductivity [9]. The combination of torso and source

models to calculate the body surface potentials is known

as the forward problem [10]. One solution for the forward

problem relays on the calculation of the body surface

potentials from the epicardial surface potentials [10]

PBBΦB + PBHΦH + GBHΓH = 0 (2)

PHBΦB + PHHΦH + GHHΓH = 0 (3)

where ΦB and ΦH are column vectors of potentials, ΓH

is a column vector of epicardial potential gradients, and the

various P and G coefficient matrices are determined solely

by integrations involving the geometry of the epicardial

(SH) and body (SB) surfaces. Solving Eq. (3) for the matrix

of epicardial potential gradients ΓH and substituting the

result into Eq. (2) yields

ΦB = ZBHΦH (4)

where ZBH is obtained by operating with the different

P and G matrices. Eq. (4) define the solution to the

forward problem. The elements of matrix ZBH are transfer

coefficients relating the potential at a particular point on

SH to that at a particular point on SB , and they depend

solely on the geometry of the epicardial and body sur-

faces and the conductivity of the torso [10]. Obviously,

Eq. (4) corresponds to a linear mixing model where a

set of observations are obtained by linearly combining a

set of sources. Because the mathematical operations that

define the voltages for the 12-lead ECG, are only linear

combinations of the body surface potentials, this do not

affect at all to the aforementioned instantaneous linear

mixture model of Eq. (4) for the 12-lead ECG.

This BSS model can be solved using ICA, which does

not introduce any restriction on the geometrical structure

of the mixing matrix (apart from the linear independence

526



of its columns) and, in addition, takes into account the

nongaussian nature of the source signals [11]. Observe

that the application of BSS-based methods on the standard

ECG can be completely justified and remarked with the

duality between Eq. (1) and Eq. (4). As a consequence, the

most important requirements to apply the ICA-based BSS

technique, namely, source independence, nongaussianity

and instantaneous non-orthogonal linear mixtures do indeed

hold for the 12-lead ECG recordings of a patient with AF.

3. Database and methods

All signals were sampled at 1 kHz and were prepro-

cessed using a notch filter to cancel out mains interference

(fn = 50Hz), and a band-pass filter with cut-off frequen-

cies of 0.5 and 65 Hz to remove baseline wandering and

reduce thermal noise. The signal database was comprised

of recordings from 10 patients in AF, all of them 12-lead

and 8 seconds in length.

Given the duality between the presented BSS and ECG

models, the skin-electrode signal vector of one AF record-

ing can be identified with x(t) in Eq. (1), where vector s(t)
will be composed of the independent components of atrial

and ventricular cardiac activities and other nuisance signals

[4]. Each entry of the mixing matrix A will depend on

the body geometry, tissue conductivity, electrode position,

etc. Hence, the AA contribution to each ECG lead can be

extracted, to obtain a unified AA signal, using and ICA-

based method. In the present work the FastICA algorithm

[7] was used due to its high performance.

The subgaussian model of AA in front of the supergaus-

sian behavior of VA allows the identification of AA using

a kurtosis-based reordering of the ICA separated sources.

This will place in one side the subgaussian sources and in

the other side the supergaussian sources.

To improve the AA identification after the kurtosis

reordering step, the power spectral density (PSD) was

computed for all the separated sources with subgaussian

kurtosis (k < 0). The procedure consisted of obtaining

the modified periodogram from the separated sources using

the Welch-WOSA method with a Hamming window of

4096 points length, a 50% overlapping between adjacent

windowed sections and a 8192 points length FFT. Later,

the spectral content above 20Hz has been discarded due

its low contribution. This way, it is possible to compare

the spectral content of the AA sources with the accepted

spectral content of AF [8, 5].

4. Results and discussion

After the application of the ICA method it was always

possible to estimate the AA and VA contained into the

episode. Fig 1 shows leads II, III, aVF and V1 from one of

time (seconds)
0 1 2 3 4 5 6 7 8

II

III

aVF

V1

Figure 1. Leads II, III, aVF and V1 from a patient with AF.

time (seconds)

AA source; k=-0.40

0 1 2 3 4 5 6 7 8

VA source; k=27.09

Figure 2. At the top, estimated AA source with its kurtosis

value. Below, is estimated VA source for the same episode.

the patients (it is accepted that these leads have the largest

AA content [1]). The result of applying ICA to this AF

episode and reordering the estimated sources as a function

of its kurtosis gives, in one extreme of the set of separated

sources, the estimated AA and, in the other extreme, the

VA. Fig. 2 plots these extremes.

To validate the statistical behavior of AA and VA, Fig. 3

shows the histograms of the signals from Fig. 2 identified as

AA and VA along with a superimposed normal distribution

for comparison. As can be seen, the AA present a subgaus-

sian distribution whereas the VA is clearly supergaussian.

Table 1 shows the results for the set of 10 patients analyzed.

As can be observed, the kurtosis for the estimated AA was

always below zero and, for the VA case, it was clearly above

zero, thus corroborating the previously justified statistical

behavior of both cardiac activities.

In general, the subgaussian behavior of the estimated AA

is not so far from Gaussianity. Nevertheless, this result

has not to be considered as a problem for the separation

of AA from Gaussian noise because the power of noise in

the ECG is much more smaller that AA, as has been proved
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Figure 3. Histograms of the estimated atrial and ventricular

sources obtained from Fig. 2. a) Atrial activity histogram.

b) Ventricular Activity histogram.

Pat.01 Pat.02 Pat.03 Pat.04 Pat.05

kAA −0.40 −0.55 −0.11 −0.38 −0.36
kV A 27.09 28.26 36.67 48.61 28.93

Pat.06 Pat.07 Pat.08 Pat.09 Pat.10

kAA −0.31 −0.51 −0.41 −0.12 −0.40
kV A 26.65 25.75 20.22 34.44 27.71

kAA = −0.36± 0.14 kV A = 30.44± 7.83

Table 1. Kurtosis values for the patients in the database

(Pat.01 to 10) of the estimated AA (kAA) and VA (kV A).

The mean value and standard deviation, in each case, for all

the patients analyzed are kAA and kV A respectively.

in the results. Moreover, it could be possible to separate the

AA from Gaussian noise via their very dissimilar time and

frequency behavior, as proved in [12].

5. Conclusions

The present contribution has proven the suitability of

the ICA-based methods to separate AA and VA in patients

with AF due to the justification of the sequel facts: firstly,

in atrial arrhythmia episodes the bioelectric sources of the

heart generating AA and VA can be regarded as uncoupled

and statistically independent. Secondly, both activities

present a non-Gaussian behavior and, finally, AA and VA

are manifested at the body surface as an instantaneous linear

mixture in which the mixture depends on the electrode

position of the ECG. These considerations make feasible

the application of ICA to solve the AA extraction problem

in AF and this contribution has justified theoretically the

applicability of these techniques. Later, the theoretical

bioelectric BSS model of AF has been validated empirically

via the application of ICA to real ECG recordings.
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