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Abstract

Ventricular Late Potentials (VLPs) are low-level high-

frequency signals that are usually found within the

terminal part of the QRS complex from patients after

Myocardial Infarction. Patients with VLPs are at risk of

developing Ventricular Tachycardia, which is the major

cause of death of patients suffering from heart disease.

In this study, the Continuous Wavelet Transform was

used to detect VLPs and then approximate entropy

(ApEn) was applied to classify subjects with and without

VLPs. Approximate entropy has been recently proposed

to quantify the irregularity in physiological signals. High

ApEn values indicate greater irregularity. Patients with

VLPs tend to have higher ApEn values than those

without. Preliminary investigations in this study show

promising results for distinction between the two patient

groups.

1. Introduction

Ventricular Late Potentials are low-amplitude, high-

frequency signals that generally occur within the terminal

part of the QRS complex and the beginning of the ST

segment. It is believed that VLPs are generated from a

region of the damaged myocardium where the ventricular

depolarisation is delayed. VLPs appear as fractionated

signals with irregularity in shape on the body surface.

From the studies in clinical cardiology, it has been shown

that the occurrence of VLPs is prevalent in post-

Myocardial Infarction (MI) patients at risk of developing

Ventricular Tachycardia, which is one of the leading

causes of sudden cardiac death. Hence the detection of

VLPs has become a topic of great interest in cardiology

for over three decades. Early diagnosis of heart disease

by detecting VLPs might save a large number of patients’

lives.

The standard method for detecting VLPs was proposed

by Simson [1,2]. This method computes the parameter

measurements obtained from the filtered signal-averaged

ECG in the time domain. Many attempts have been made

to study VLPs using time-frequency domain techniques,

for example the Wigner Distribution (WD) and the Short

Time Fourier Transform (STFT). The limitation of the

WD is that it produces unwanted interference terms that

do not reflect the original signal whereas the STFT has

fixed time-frequency resolution that is not optimal for the

analysis of non-stationary signals. VLPs are assumed to

be non-stationary signals. The wavelet transform is

proposed as an alternative technique and it can overcome

the limitations encountered in the WD and STFT.

In this study, the Continuous Wavelet Transform

(CWT) was used to analyse the High Resolution ECG

(HRECG) in the time-scale domain. Then, based on the

CWT, a new concept of approximate entropy was

investigated to classify patients with and without VLPs.

2. Data acquisition

High Resolution ECG recordings were acquired from

post-MI patients using orthogonal XYZ leads at a

sampling rate of 1000Hz and a resolution of 12 bits. The

standard time domain method [1,2] was used to identify

patients who exhibited the presence of VLPs. According

to the standard method, the patient data set was divided

into two groups, patients with and without VLPs. The

results of the two patient groups were taken as a reference

to evaluate the proposed method in this study.

3. The continuous wavelet transform

More recently, among time-frequency methods, the

CWT seems to be a tool of choice for HRECG analysis

[3,4]. The main advantage of the CWT is that it provides

variable time frequency resolution. It is defined as:
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where )(ts  is the signal, )(t�  is the mother wavelet,

scaled by a and shifted by �. The scaling parameter a can

be viewed as the inverse of frequency. Dilating or

contracting the wavelet changes frequencies of interest.

The wavelet is contracted at smaller scales,

corresponding to high frequencies, which can detect high

frequency components of the signal whereas the wavelet

is dilated at larger scales, relating to low frequencies,

which can extract the low frequency components of the

signal. This provides varying time-frequency resolution.

Shifting the wavelet is to localise the signal in time. The

CWT thus offers a good compromise between time
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localisation and frequency resolution. Further details

about the CWT can be found in the literature [5,6]. It is

obvious that the variable time frequency resolution

characteristic of the CWT is well suited to the analysis of

non-stationary signals containing short, high-frequency

components. As VLPs are considered to be short-duration

high-frequency signals, the CWT seems to be a

promising technique for this task. The CWT with smaller

scales can be successfully used to detect the presence of

VLPs [7]. Because the CWT is computed in terms of

scale instead of frequency, it produces a time-scale

representation of the signal.

4. HRECG analysis with the CWT

To detect the presence of VLPs, the CWT with small

scales was used. Each individual signal XYZ lead was

first averaged to reduce the random noise level and each

of the averaged XYZ leads was then applied to the CWT.

The CWT of scales 3-10 using a Daubechies 2 mother

wavelet was investigated. The CWT from each lead was

then combined to form a vector magnitude CWT as

defined in Equation 2. This allows all of the late potential

information to be analysed.

)( 222 CWTZCWTYCWTXCWTV ��� (2)

where CWTV is the vector magnitude. CWTX, CWTY, and

CWTZ are the CWT of the XYZ leads, respectively.

The resulting vector magnitude CWTV plots for scales

3-10 from a patient without VLPs and another patient

with at the time interval from the R wave to 150 ms after

are illustrated in Figures 1 and 2, respectively. It appears

that the vector magnitude CWTV is becoming increasing

regular from scales 3 to 10 in both patients. By visual

inspection in Figures 1 and 2, an observable difference

between the two patients can be obtained. The patient

with VLPs exhibits greater fluctuation or irregularity than

the one without VLPs over scales 3 to 10.
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Figure 1. The CWTV plot for a patient without VLPs at

scales 3-10.
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Figure 2. The CWTV plot for a patient with VLPs at

scales 3-10

5. Approximate entropy

There is increasing interest in measuring the degree of

irregularity of physiological data using Approximate

Entropy (ApEn). ApEn has shown a very significant

difference in irregularity of physiological measurements

between normal and abnormal patients. It has been

applied widely to heart rate variability, changes in

hormone levels, and EEG analysis.

Pincus first proposed approximate entropy as a

regularity statistic for system complexity [8]. It is a new

mathematical approach, which can be used to quantify

the irregularity of signals. Signals containing regular

patterns (e.g. sinusoidal signals) have small ApEn values

whereas those with irregular behaviour (e.g. random

noise) show high ApEn values.

In this study, ApEn is slightly modified and defined as

follows [8,9]:

1. Given data )(nu  (e.g. ECG data) with N data points,

NnNuuuunu ,...,3,2,1);(),...,3(),2(),1()( �� (3)

2. Form vector sequences of length m from the given data

)(nu : Vector sequences )1(),...,1( ��mNxx  are formed

by defining:� �)1(),...,1(),()( ���� miuiuiuix ; 1,...,1 ��� mNi  (4)

3. Define the distance � �)(),( jxixd  between two vectors

)(ix  and )( jx  as the maximum absolute difference

between their corresponding scalar components.

� � � �)()(max)(),( kjukiujxixd ���� ; 1,...,0 �� mk (5)

4. For a given vector )(ix , count the number of j

such that � � rjxixd �)(),( (6)

The parameter r  is the factor of similarity that acts like a

noise filter.

Let )(iM  be the number of j such that � � rjxixd �)(),( .
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Two vectors, )(ix  and )( jx , are similar if

� � rjxixd
�

)(),( . Thus, )(iM  is the number of vectors in

all 1�� mN  vectors, which are similar to a given

reference vector )(ix . The quantity )(iC
m

r
 is the

probability that any vector )( jx  within the distance r  is

similar to a given vector )(ix  of length m , therefore

)(iC
m

r
 of each vector can be computed. Then, )(rP

m
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defined as the mean of all the )(iC
m

r
 values.

5. Increase the length to 1�m , repeat steps 2-4 and find
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6. Calculate ),( rmApEn :

� �)()(ln),( 1 rPrPrmApEn mm �� (8)

ApEn provides a measure of irregularity. A signal with

high regularity has a very small ApEn value. On the other

hand, a signal with very low regularity produces a high

ApEn value. In computing ApEn, two input values, m

and r , must be specified. As suggested by Pincus, the

most commonly used m  value is 2 for physiological data.

The r  value should be at least 3 times the mean noise

amplitude in order to prevent computation error of the

ApEn value [8].

6. Quantifying the HRECG irregularity

To quantify irregularity of the CWTV plots in Figures

1 and 2, the approximate entropy method described in

Section 5 was used. ApEn was applied to the vector

magnitude CWTV and then the ApEn value was

computed for each patient. The vector magnitude

obtained from the CWT was investigated at different time

intervals for computation of the ApEn value. Time

intervals started from the R wave, 10 ms after, 20 ms

after, 30 ms after, and 40 ms after the R wave.

7. Results of ApEn

For each patient, the ApEn value of each scale from 3-

10 was computed at different values of m  and r  for

different time intervals. The m  values of 1, 2 and 3 were

tested and the r  values of 3-4 times the mean absolute

noise, in steps of 0.1, were examined. The mean absolute

noise was calculated at the ST segment where no cardiac

activity was present.

It was found from the results that greater irregularity

of VLPs were obtained in the small scales of the CWT at

the m  value of 2 and r  of 3.2. In this study, scales 3, 4,

and 6 were used for the ApEn calculation because of the

distinguishing difference between the two patient groups.

The mean ApEn obtained from the scales 3, 4, 6 was

computed at different time intervals. The computed mean

ApEn at the time duration from 20 and 30 ms after the R

wave revealed distinct separation between patients with

and without VLPs. For example, the computed mean

ApEn of a patient without VLPs was 0.004 and 0.031 for

a patient with VLPs at the time duration of 30 ms after

the R wave. Results of the computed mean ApEn values

for the time durations of 20 and 30 ms after the R wave

are shown in Figures 3a and 3b, respectively. In Figures

3a and 3b, the difference between the two patient groups

was confirmed at the 99.9% level of confidence

(p<0.0005) from the Wilcoxon Rank Sum Test. Patients

are classified as borderline patients if their measurement

parameters computed from the filtered HRECG are very

close to the criteria values of the Simson’s standard

method.

In Figure 3a, a threshold value of 0.0203 was

empirically chosen to differentiate the two patient groups.

The sensitivity and specificity of the ApEn were

computed for the complete and modified data sets. The

results were sensitivity of 85% and specificity of 96% for

the complete data set. Sensitivity of 100% and specificity

of 100% were obtained in the modified data set where the

borderline patients are removed.

In Figure 3b, the sensitivity and specificity are the

same as those in Figure 3a for both the complete and

modified data sets at the empirically chosen threshold

value of 0.0168.

In Figure 3, It is interesting to note that there are a few

patients with and without VLPs who were possibly

misclassified by the Simson method. When these

misclassified patients were removed, the sensitivity and

specificity were recomputed. Figures 3a and b show the

same recomputed sensitivity of 94% and same

recomputed specificity of 98% for the complete data set.

Figure 3. The computed ApEn from the time interval 20

ms after the R wave (a) and 30 ms after (b).
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8. Discussion and conclusions

A new concept of approximate entropy was applied to

the CWT processed HRECG data. The approximate

entropy has been widely used to quantify the subtle

difference in regularity of signals. Greater irregularity of

a signal produces a larger ApEn value. Patients with

VLPs are more irregular whereas patients without VLPs

are more regular. As expected, patients with VLPs have

larger ApEn values than those without VLPs. The ApEn

value may provide additional findings that patients with

VLPs would produce highly irregular signals from their

damaged myocardium.

In this study, different time intervals of HRECG data

from the R wave were investigated. Results showed that

the significant difference between two patient groups

started detecting irregularity at a time of 20 ms after the

R wave. One of the possible reasons is that the high QRS

energy would mask the low level VLPs between the R

wave and just before 20 ms after the R wave. Another

reason is that VLPs with the CWT analysis would start

occurring at 20 ms after the R wave.

In computing ApEn, two parameters, m  and r  must

be fixed. In this work, m  of 2 was selected due to the

best performance obtained and this value was widely

used with successful results in the clinical application.

For the r  value, it was recommended that the r  value

should be chosen to be larger than the noise, on the other

hand, it should not be too large else the detailed

information of VLPs would be lost. Results of ApEn

exhibited that the appropriate value of r  should be 3.2

times the mean absolute noise.
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