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Abstract 

Extraction of atrial activity (AA) is quite important in 

the study of different atrial arrhythmias. This work shows 

the possibility of AA extraction from Atrial Fibrilation  

(AF) episodes in Holter registers using only one lead 

with a new technique, the adaptive wavelet analysis 

(AWA). The principal aim is to adapt automatically the 

Discrete Packet Wavelet Transform (DPWT) depending 

on the shape of the signal considered in each moment. 

The more suitable wavelet functions are selected to 

obtain several ideal wavelet forms. Every register is 

divided in different blocks and a DPWT is applied using 

the corresponding wavelet in each block. So, the analysis 

is adapted to the behaviours and properties of the lead 

under analysis. After the mentioned process, the AA is 

reconstructed using the best coefficients of the obtained 

wavelet decomposition. The AWA should be applicable in 

arrhythmia detection and analysis, like paroxismal atrial 

fibrillation, which have to be usually detected from 

Holter systems.  

 

1. Introduction 

Atrial Fibrillation (AF) is one of the most common 

arrhythmias. About the 2-4% of the people above 60 

years suffer from AF. These numbers raise by 12% in 

people above 75 [1]. The paroxysmal AF is one type of 

AF, it appears in episodes with lengths below 48 hours 

and in most cases have to be detected in Holter registers 

where the number of leads is reduced. The isolated study 

of the registered atrial activity (AA) in the 

electrocardiogram (ECG) is necessary for the detection 

and characterization of the AF in these cases [2-4]. This 

study  requires a previous extraction or cancellation of 

the ventricular activity (VA) which is spectrally 

overlapped and has larger amplitude level than the AA.  

In previous works [5], the Discrete Packet Wavelet 

Transform (DPWT) has been applied as a non-invasive 

method for AA extraction. The main advantage of the 

analysis with DPWT is the needles of several leads from 

the ECG, hence, it is ideal for the study of Holter 

registers, where the number of available leads is reduced. 

The main problem of DPWT is the poor performance in 

real AF registers under extreme chaotic behaviours what 

make necessary the use of adaptive systems [6-8]. One of 

the main problem and, at the same time, goals of the 

present wavelet-based study is to find the more suitable 

wavelet mother function. In AF registers, the base line 

fluctuations (known as ‘f� waves) and the fast changes in 

size, orientation and length  of these waves make difficult 

the election of one wavelet function for the whole 

analysed segment. 

In this work, the Adaptive Wavelet Analysis (AWA) is 

presented as a new method to extract the AA. It is based 

on the same methodology as the DPWT but, now, the 

AWA is able to select and change to the more suitable 

wavelet family, in different fragments of the ECG 

according with the form of each QRS complex. This 

technique improves considerably the results obtained by 

previous works using only a function in the whole AF 

episode. 
 

2. Methods 

2.1.       Database 
 

A database of artificial signals has been created, where 

the AA is known and simulated. A synthesized AF signal 

has been added to sinus rhythm recordings using linear 

combination, so the shape and behavior of the atrial 

signal is known and the performance of the method can 

be measured by comparison of expected and estimated 

AA. These AF episodes present a dominant peak in 6.10 

Hz and a 70% spectral energy concentration around this 

peak. These are typical values found in the spectral 

analysis of real AF recordings [9]. The signals used are 

created from recordings of the MIT-BIT and an own 

database of ECG, with signals obtained at the Cardiac 

Electrophysiology Lab of the University Clinical Hospital 

in Valencia and diagnosed by cardiologists. This database 

contains sinus rhythms, real AF episodes and artificial 

AF episodes. The length of all the registers is 5 seconds, 

the sample rate is 1 kHz, and V1 is the considered lead. 

All the registers have been pre-processed and normalized 

to remove possible fluctuations of the base line, 

interferences, noises, etc. The configuration of the 

database is shown in Table 1. 
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Table 1. Registers used in the database. 

 

 Synthesized SR+AF Real AF 

Number 19 8 

 

2.2. Wavelet analysis 
 

Wavelet analysis consists of decomposing a signal, in 

this case the ECG signal, into a hierarchical set of 

wavelets coefficients; approximations and details. These 

coefficients are obtained from the signal multiplied by 

scaled -compressed or stretched- and shifted -delayed or 

hastened- versions of the mother wavelet function Ψ.  

The set of translated and scaled wavelets associated with 

Ψ can be expressed as follows, where the parameters ‘a� 

and ‘b� determine the scale and position respectively. 

 

�
�

�
�
�

� −

a

bx

a
ψ

1
  (1) 

 

In the Discrete Wavelet Transform (DWT) only the 

approximation coefficients are split in consecutive 

approximation and detail coefficients. However, in the 

DPWT, the details as well as the approximations can be 

split. This offers too much information and it requires to 

find the best signal decomposition tree. Therefore, 

DPWT can be considered as a generalization of the DWT 

and it is recommended in applications where the 

behaviour of the analysed signal can change quickly 

being necessary to use different decomposition trees in 

different fragments of the same signal, as occurs in our 

case. There are different types of wavelet families whose 

qualities vary according to several criteria. The wavelet 

decomposition could be not the optimum if a suitable 

family is not chosen.  

 

2.3. Adaptive wavelet analysis 

The basic idea in this study is to detect the QRS 

complexes of the considered lead in a first stage, using 

traditional methods of peak detection and windowing 

[10]. After that, the estimated form of each located QRS 

complex is compared with a data base of wavelet 

functions and a set of cross correlation coefficients are 

obtained. This database is created with scaled and shifted 

versions of a selected group of typical wavelet families. 

Figure 1 and Figure 2, show the form of some of these 

functions.  

The greatest values of cross correlation coefficients 

indicate the most suitable function and the best level of 

decomposition for each selected fragment. In a second 

stage, an adaptive DPWT is done using those functions 

and levels, the VA is located in a set of coefficients in the 

decomposition tree and the AA can be extracted.  

Finally, all the segments are joined using linear 

interpolation to reduce possible border effects and the AA 

is reconstructed in the complete cardiac cycle.  

In some registers, the use of another consecutive DWT 

in the obtained signal has been necessary to remove 

possible residual QRS complexes of the previous stages. 

In these cases, the Daubechies 10 function has been used 

for the whole signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Different forms of typical wavelet families in 

the same level of decomposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Different scaled levels of a typical wavelet 

family: Symlets 7. 
 

3. Results 

In synthesized AF signals, the comparison between the 

obtained signal and the expected one is done with the 

cross correlation coefficients in the spectral and temporal 

domain. With respect to real AF signals, additional 

parameters have been considered to identify the AF 

episode, for example, principal peak and spectral energy 

concentration in the band of 5-8 Hz (named as SCBP-AA 

in the table of results). The high energy concentration in 

this band in respect of the total energy is typical in AF 
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episodes that present a dominant peak in this range. An 

increase of this concentration involves a greater purity of 

the extracted AA and it is considered as quality extraction 

index [11]. The AWA and DPWT methods have been 

applied to the registers described in Table 1. The 

comparison among the obtained results are shown in 

Table 2 for the synthesized AF episodes and in Table 3 

for the real AF episodes, including their mean value and 

standard deviation (p�0.05).  
 

Table 2. Correlation coefficients obtained with 

synthesized AF episodes. 

 

 DPWT AWA 

Spectral Corr. 0.84 ± 0.11 0.91 ± 0.08 

Temporal Corr. 0.52 ± 0.17 0.61 ± 0.11 
 

Table 3. Spectral parameters obtained with real AF 

episodes. 
 

 DPWT AWA 

Main Peak (Hz) 6.15 ± 0.37 6.03 ± 0.21 

SCBP-AA 0.62 ± 0.19 0.76 ± 0.12 

      

 As it can be observed, the AWA improves the quality 

extraction of the AA in all the cases. In real signals, the 

detected main peak is basically the same in both methods 

but the values of SCBP-AA are clearly higher in AWA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparison of extracted AA in synthesized 

signals. 

In Figure 3, it is shown the form of the extracted AA 

from a synthesized AF  register of the database. There are 

not residual complexes in any case but the signal 

obtained with the DPWT shows fluctuations, not present 

in the original AA and in the AWA signal. This fact has 

been observed in the rest of the registers, being this one 

of the causes of the poor performance of DPWT. 

Figure 4 shows the results in the case of real AF 

episodes. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of extracted AA in real AF 

episodes. 

 

 The form of the AA achieved from DPWT does not 

respect the original shape of the ‘f� waves and it is very 

similar to a sum of sinusoids. Although some residuals 

sinusoids of the same type appear in the place where the 

QRS complexes are located, this distortion is reduced 

with the use of AWA,  . 

 Figure 5 shows the spectral distributions of the 

different obtained AA, where frequencies above 35 Hz 

have not been considered. The parameters used to 

calculate this distributions are the Welch method, Bartlett 

window of 4096 points, 50% overlapping and a 8192 

points FFT. 
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Figure 5. Comparison of PSD estimated in extracted AA 

from real AF registers with both methodologies. 
 

  

 The greater concentration of the energy in the case of 

AWA demonstrates a better quality of the extraction, as it 

can be observed. 
 

4. Conclusion 

Throughout this work, the improvements of the AWA 

as a complement of the DPWT have been shown. This is 

an important step to find an atrial extraction method 

applicable in short duration registers with a reduced  

number of leads. The presented adaptive process makes 

the system more reliable in the cases of AF episodes with 

fast fluctuations and abnormal beats where other methods 

are less efficient.   

Finally, this complementary process, joined to DPWT 

methods, should be applicable in arrhythmia detection 

and analysis, like paroxismal atrial fibrillation, which 

have to be  usually detected from Holter systems.  
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